- #1
DreamWeaver
- 303
- 0
In certain forms - including the logarithmic - a number of the trigonometric and hyperbolic functions can be used to sum series having Riemann Zeta and Dirichlet Beta functions (in the general series term). In this tutorial, we explore some of these connections, and present a variety of Zeta and Beta series.---------------
Preliminaries:
---------------The following series expansions for the trigonometric functions will be used throughout, where\(\displaystyle B_k\) and \(\displaystyle E_k\) are the Bernoulli respectively Euler numbers.\(\displaystyle (1.0)\quad \log(\sin x) = \log x+ \sum_{k=1}^{\infty} (-1)^k \frac{2^{2k-1}B_{2k}}{k(2k)!}x^{2k}\)
Condition: \(\displaystyle 0 < x < \pi\)
\(\displaystyle (1.1)\quad \log(\cos x) = \sum_{k=1}^{\infty} (-1)^k \frac{ 2^{2k-1}(2^{2k}-1) B_{2k}}{k(2k)!}x^{2k}\)
Condition: \(\displaystyle -\pi/2 < x < \pi/2\)
\(\displaystyle (1.2)\quad \log(\tan x) = \log x+ \sum_{k=1}^{\infty} (-1)^{k+1} \frac{2^{2k} (2^{2k}-1) B_{2k} }{k(2k)!}x^{2k}\)
Condition: \(\displaystyle 0 < x < \pi/2\)
\(\displaystyle (1.3)\quad \tan x = \sum_{k=1}^{\infty}(-1)^{k+1}\frac{ 2^{2k}(2^{2k}-1) B_{2k} }{(2k)!} x^{2k-1}\)
Condition: \(\displaystyle -\pi/2 < x < \pi/2\)
\(\displaystyle (1.4)\quad \cot x = \frac{1}{x} + \sum_{k=1}^{\infty} (-1)^k\frac{2^{2k}B_{2k}}{(2k)!} x^{2k-1}\)
Condition: \(\displaystyle -\pi < x < \pi\)
\(\displaystyle (1.5)\quad \csc x = \frac{1}{x} + 2\, \sum_{k=1}^{\infty}(-1)^{k+1}\frac{(2^{2k-1}-1) B_{2k}}{(2k)!} x^{2k-1}\)
Condition: \(\displaystyle -\pi < x < \pi\)
\(\displaystyle (1.6)\quad \sec x = 1+ \sum_{k=1}^{\infty} \frac{E_{2k}}{(2k)!} x^{2k}\)
Condition: \(\displaystyle -\pi/2 < x < \pi/2\)
The Riemann Zeta function \(\displaystyle \zeta(x)\) and Dirichlet Beta function \(\displaystyle \beta(x)\) are defined in the usual way:\(\displaystyle (1.7)\quad \zeta(x) = 1+\frac{1}{2^x} +\frac{1}{3^x} +\frac{1}{4^x} + \cdots = \sum_{k=1}^{\infty}\frac{1}{k^x}\)\(\displaystyle (1.8)\quad \beta(x) = 1-\frac{1}{3^x} +\frac{1}{5^x} -\frac{1}{7^x} + \cdots = \sum_{k=10}^{\infty}\frac{(-1)^k}{(2k+1)^x}\)For Zeta functions of even index, \(\displaystyle \zeta(2k)\), and Beta functions of odd index, \(\displaystyle \beta(2k+1)\), have the following closed forms:\(\displaystyle (1.9)\quad \zeta(2n) = (-1)^{n+1}\frac{(2\pi)^{2n} B_{2n}}{2(2n)!}\)\(\displaystyle (1.10)\quad \beta(2n+1) = (-1)^n\frac{\pi^{2n+1}E_{2n}}{2^{2n+2}(2n)!}\)
Back in a bit... (Heidy)(Heidy)(Heidy)
Preliminaries:
---------------The following series expansions for the trigonometric functions will be used throughout, where\(\displaystyle B_k\) and \(\displaystyle E_k\) are the Bernoulli respectively Euler numbers.\(\displaystyle (1.0)\quad \log(\sin x) = \log x+ \sum_{k=1}^{\infty} (-1)^k \frac{2^{2k-1}B_{2k}}{k(2k)!}x^{2k}\)
Condition: \(\displaystyle 0 < x < \pi\)
\(\displaystyle (1.1)\quad \log(\cos x) = \sum_{k=1}^{\infty} (-1)^k \frac{ 2^{2k-1}(2^{2k}-1) B_{2k}}{k(2k)!}x^{2k}\)
Condition: \(\displaystyle -\pi/2 < x < \pi/2\)
\(\displaystyle (1.2)\quad \log(\tan x) = \log x+ \sum_{k=1}^{\infty} (-1)^{k+1} \frac{2^{2k} (2^{2k}-1) B_{2k} }{k(2k)!}x^{2k}\)
Condition: \(\displaystyle 0 < x < \pi/2\)
\(\displaystyle (1.3)\quad \tan x = \sum_{k=1}^{\infty}(-1)^{k+1}\frac{ 2^{2k}(2^{2k}-1) B_{2k} }{(2k)!} x^{2k-1}\)
Condition: \(\displaystyle -\pi/2 < x < \pi/2\)
\(\displaystyle (1.4)\quad \cot x = \frac{1}{x} + \sum_{k=1}^{\infty} (-1)^k\frac{2^{2k}B_{2k}}{(2k)!} x^{2k-1}\)
Condition: \(\displaystyle -\pi < x < \pi\)
\(\displaystyle (1.5)\quad \csc x = \frac{1}{x} + 2\, \sum_{k=1}^{\infty}(-1)^{k+1}\frac{(2^{2k-1}-1) B_{2k}}{(2k)!} x^{2k-1}\)
Condition: \(\displaystyle -\pi < x < \pi\)
\(\displaystyle (1.6)\quad \sec x = 1+ \sum_{k=1}^{\infty} \frac{E_{2k}}{(2k)!} x^{2k}\)
Condition: \(\displaystyle -\pi/2 < x < \pi/2\)
The Riemann Zeta function \(\displaystyle \zeta(x)\) and Dirichlet Beta function \(\displaystyle \beta(x)\) are defined in the usual way:\(\displaystyle (1.7)\quad \zeta(x) = 1+\frac{1}{2^x} +\frac{1}{3^x} +\frac{1}{4^x} + \cdots = \sum_{k=1}^{\infty}\frac{1}{k^x}\)\(\displaystyle (1.8)\quad \beta(x) = 1-\frac{1}{3^x} +\frac{1}{5^x} -\frac{1}{7^x} + \cdots = \sum_{k=10}^{\infty}\frac{(-1)^k}{(2k+1)^x}\)For Zeta functions of even index, \(\displaystyle \zeta(2k)\), and Beta functions of odd index, \(\displaystyle \beta(2k+1)\), have the following closed forms:\(\displaystyle (1.9)\quad \zeta(2n) = (-1)^{n+1}\frac{(2\pi)^{2n} B_{2n}}{2(2n)!}\)\(\displaystyle (1.10)\quad \beta(2n+1) = (-1)^n\frac{\pi^{2n+1}E_{2n}}{2^{2n+2}(2n)!}\)
Back in a bit... (Heidy)(Heidy)(Heidy)
Last edited by a moderator: