- #1
karush
Gold Member
MHB
- 3,269
- 5
$2\cos{\theta}+2\sin{\theta}=\sqrt{6}$
$\displaystyle\cos{\theta}+\sin{\theta}=\frac{ \sqrt{6} }{2}$
$\displaystyle(\cos{\theta}+\sin{\theta})^2=\frac{3}{2}$
$\displaystyle\cos^2{\theta}+2cos\theta\sin\theta+\sin{\theta}^2=\frac{3}{2}$
$\displaystyle\sin{2\theta}=\frac{1}{2}
\Rightarrow
\theta=\frac{\pi}{12}=15^o
$
the other answer is $75^o$ but don't know how you get it.
$\displaystyle\cos{\theta}+\sin{\theta}=\frac{ \sqrt{6} }{2}$
$\displaystyle(\cos{\theta}+\sin{\theta})^2=\frac{3}{2}$
$\displaystyle\cos^2{\theta}+2cos\theta\sin\theta+\sin{\theta}^2=\frac{3}{2}$
$\displaystyle\sin{2\theta}=\frac{1}{2}
\Rightarrow
\theta=\frac{\pi}{12}=15^o
$
the other answer is $75^o$ but don't know how you get it.