- #1
Jesssa
- 51
- 0
hey,
[itex](1-{{x}^{2}}){{y}^{''}}-2x{{y}^{'}}+n(n+1)y=0,\,\,\,\,\,-1\le x\le 1[/itex]
to convert the legendre equation y(x) into trig form y(cos[itex]\theta[/itex]) is it simply, set x=cos[itex]\theta[/itex] then
[itex](1-{{\cos }^{2}}\theta ){{y}^{''}}-2{{y}^{'}}\cos \theta +n(n+1)y=0[/itex] for [itex]-\pi \le x\le \pi[/itex]
[itex]{{\sin }^{2}}\theta {{y}^{''}}-2{{y}^{'}}\cos \theta +n(n+1)y=0[/itex] ?
im just a little paranoid this seems a bit straightforward for a past test question
[itex](1-{{x}^{2}}){{y}^{''}}-2x{{y}^{'}}+n(n+1)y=0,\,\,\,\,\,-1\le x\le 1[/itex]
to convert the legendre equation y(x) into trig form y(cos[itex]\theta[/itex]) is it simply, set x=cos[itex]\theta[/itex] then
[itex](1-{{\cos }^{2}}\theta ){{y}^{''}}-2{{y}^{'}}\cos \theta +n(n+1)y=0[/itex] for [itex]-\pi \le x\le \pi[/itex]
[itex]{{\sin }^{2}}\theta {{y}^{''}}-2{{y}^{'}}\cos \theta +n(n+1)y=0[/itex] ?
im just a little paranoid this seems a bit straightforward for a past test question