- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
For any triangle $ABC$, prove that
$\cos \dfrac{A}{2} \cot \dfrac{A}{2}+\cos \dfrac{B}{2} \cot \dfrac{B}{2}+\cos \dfrac{C}{2} \cot \dfrac{C}{2} \ge \dfrac{\sqrt{3}}{2} \left( \cot \dfrac{A}{2}+\cot \dfrac{B}{2}+\cot \dfrac{C}{2} \right)$
$\cos \dfrac{A}{2} \cot \dfrac{A}{2}+\cos \dfrac{B}{2} \cot \dfrac{B}{2}+\cos \dfrac{C}{2} \cot \dfrac{C}{2} \ge \dfrac{\sqrt{3}}{2} \left( \cot \dfrac{A}{2}+\cot \dfrac{B}{2}+\cot \dfrac{C}{2} \right)$