- #1
ramsey2879
- 841
- 3
Let [tex] T_{n} = n*(n+1)/2[/tex] and n and m are integers. I discovered that
[tex]2*n+1 = \frac{(T_{(n-1)} -m)*(T_{(n+2)}-m) - (T_{(n-2)}-m)*(T_{(n+1)}-m)}{(T_{n} - m - 1)}[/tex] except for the case where the denominator is zero.
Is there a simple way to prove this identity?
[tex]2*n+1 = \frac{(T_{(n-1)} -m)*(T_{(n+2)}-m) - (T_{(n-2)}-m)*(T_{(n+1)}-m)}{(T_{n} - m - 1)}[/tex] except for the case where the denominator is zero.
Is there a simple way to prove this identity?