- #1
hcpyz
- 2
- 2
The hypothesis is that the force of a real spring can be described as $$F = -kx + \alpha x^2$$ with x being the spring deformation and k its constant. The \alpha x^2 would be the force lost by the spring as x becomes too big. To test that, a system was build with block of mass m suspended by a vertical spring. Different blocks with different masses were used and, in the equilibrium state, the value y of its height in relation to the ground was registered. Worth mentioning that for the problem $$x = y_0 - y$$ with y_0 being the height of the lower end of the spring in relation to the ground when there is no block.
**The problem is**: Find a function y = y(m) in terms of k, alpha and y_0 .
**What I've done so far**
I thought that since we are dealing with a mass spring system we would find an equation for the system without any mass being weighted. So:
$$
-k(y_0) + \alpha(y_0)^2 = 0
$$
I don't feel very confident with that statement but moving on...
The I found an equation for the system when there's a mass being weighted, which would be found by doing the force diagram. This is being really confusing to me, so...
$$
P = mg = -kx + \alpha x^2
$$
Here I'm really confused with the minus sing. But well, moving on again...
$$
mg = -k(y_0 - y) + \alpha (y_0 - y)^2
$$
And then I thought that it would be a good idea to solve this system.
$$
\begin{cases}
-k(y_0) + \alpha(y_0)^2 = 0 \\
mg = -k(y_0 - y) + \alpha (y_0 - y)^2
\end{cases}
$$
I've tried doing it by hand and also with wolfram mathematica but it seems unsolvable thus I think I'm missing the conceptual part of it in the force diagram I built with the equation, am I getting the minus sing wrong?
**The problem is**: Find a function y = y(m) in terms of k, alpha and y_0 .
**What I've done so far**
I thought that since we are dealing with a mass spring system we would find an equation for the system without any mass being weighted. So:
$$
-k(y_0) + \alpha(y_0)^2 = 0
$$
I don't feel very confident with that statement but moving on...
The I found an equation for the system when there's a mass being weighted, which would be found by doing the force diagram. This is being really confusing to me, so...
$$
P = mg = -kx + \alpha x^2
$$
Here I'm really confused with the minus sing. But well, moving on again...
$$
mg = -k(y_0 - y) + \alpha (y_0 - y)^2
$$
And then I thought that it would be a good idea to solve this system.
$$
\begin{cases}
-k(y_0) + \alpha(y_0)^2 = 0 \\
mg = -k(y_0 - y) + \alpha (y_0 - y)^2
\end{cases}
$$
I've tried doing it by hand and also with wolfram mathematica but it seems unsolvable thus I think I'm missing the conceptual part of it in the force diagram I built with the equation, am I getting the minus sing wrong?