- #1
vparam
- 17
- 3
- Homework Statement
- A fully fueled rocket has a mass of 21,000 kg, of which 15,000 kg is fuel. The burned fuel is spewed out the rear at a rate of 190 kg/s with a speed of 2800 m/s relative to the rocket. If the rocket is fired vertically upward calculate its final velocity at burnout (all fuel used up). Ignore air resistance and assume g is a constant 9.80 m/s^2.
- Relevant Equations
- M * dv/dt = ∑F_ext + v_rel * dM/dt
I chose to set the upwards direction to be positive and dM/dt = R = 190 kg/s, so I can solve the problem in variable form and plug in. With the only external force being gravity, this gives
M(t) * dv/dt = -M(t) * g + v_rel * R
where M(t) is the remaining mass of the rocket. Rearranging this equation gives:
dv/dt = -((v_rel * R)/M(t)) - g
Since R is constant, M(t) = M_0 - R * t, where M_0 is the initial mass of the rocket. Plugging in gives:
dv/dt = -((v_rel * R)/(M_0 - R * t)) - g.
Solving as a separable differential equation, I arrived at the answer (assuming v = 0 at t = 0):
v(t) = -g * t + v_rel * ln(M_0 - R * t).
However, after plugging in values, I'm not able to get the correct answer. The solution instead has a different equation for v(t):
v(t) = -g * t + v_rel * ln(M/M_0).
Any help about where I could be going wrong with the physical setup or the math of this problem would be much appreciated. Thanks in advance!
M(t) * dv/dt = -M(t) * g + v_rel * R
where M(t) is the remaining mass of the rocket. Rearranging this equation gives:
dv/dt = -((v_rel * R)/M(t)) - g
Since R is constant, M(t) = M_0 - R * t, where M_0 is the initial mass of the rocket. Plugging in gives:
dv/dt = -((v_rel * R)/(M_0 - R * t)) - g.
Solving as a separable differential equation, I arrived at the answer (assuming v = 0 at t = 0):
v(t) = -g * t + v_rel * ln(M_0 - R * t).
However, after plugging in values, I'm not able to get the correct answer. The solution instead has a different equation for v(t):
v(t) = -g * t + v_rel * ln(M/M_0).
Any help about where I could be going wrong with the physical setup or the math of this problem would be much appreciated. Thanks in advance!