Troubleshooting an Equation of the Curve with y Intercept 4

beanryu
Messages
90
Reaction score
0
Find an equation of the curve that satisfies

dy/dx = 88yx^(10)
and whose y intercept is 4

dy/y = 88x^(10)dx

integral both sides

ln(y) = 8x^(11)
y = e^(8x^(11))+C

put x = 0 into the equation
I got C = 3.

Why am I wrong?
 
Physics news on Phys.org
Because you're supposed to add the constant of integration C right after you integrate, and THEN exponentiate both sides.
 
THanx dude!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top