- #1
lukaszh
- 32
- 0
Hello,
could you help me with some true false questions about matrices?
First
If [tex]\mathbf{A}=\mathbf{B}-\mathrm{i}\mathbf{C}[/tex] is hermitian matrix [tex]\mathbf{B},\mathbf{C}[/tex] are real, then [tex]\mathbf{B},\mathbf{C}[/tex] are anti-symmetric matrices. True? False?
My solution
If [tex]\mathbf{A}[/tex] is hermitian, then [tex]\mathbf{A}^{\mathrm{H}}=\mathbf{A}[/tex] so [tex](\mathbf{B}-\mathrm{i}\mathbf{C})^{\mathrm{H}}=\mathbf{B}^{\mathrm{H}}-(\mathrm{i}\mathbf{C})^{\mathrm{H}}=\mathbf{B}^{\mathrm{T}}+i\mathbf{C}^{\mathrm{T}}[/tex]. It implies the fact [tex]\mathbf{B}^{\mathrm{T}}+i\mathbf{C}^{\mathrm{T}}=\mathbf{B}-\mathrm{i}\mathbf{C}[/tex]. [tex]\mathbf{B}[/tex] is symmetric and [tex]\mathbf{C}[/tex] is anti-symmetric. FALSE
Second
If A is diagonalizable and its eigenvalues are [tex]\{\lambda_1,\lambda_2,\cdots,\lambda_n\}[/tex], then [tex]\prod_{k=1}^{n}(x-\lambda_k)=0[/tex] has n different solutions
My solution
Matrix is diagonalizable, then [tex]\lambda_i\ne\lambda_j[/tex] for [tex]i\ne j[/tex]. So polynomial has n different soln's. TRUE
Thank you very much for your help...
could you help me with some true false questions about matrices?
First
If [tex]\mathbf{A}=\mathbf{B}-\mathrm{i}\mathbf{C}[/tex] is hermitian matrix [tex]\mathbf{B},\mathbf{C}[/tex] are real, then [tex]\mathbf{B},\mathbf{C}[/tex] are anti-symmetric matrices. True? False?
My solution
If [tex]\mathbf{A}[/tex] is hermitian, then [tex]\mathbf{A}^{\mathrm{H}}=\mathbf{A}[/tex] so [tex](\mathbf{B}-\mathrm{i}\mathbf{C})^{\mathrm{H}}=\mathbf{B}^{\mathrm{H}}-(\mathrm{i}\mathbf{C})^{\mathrm{H}}=\mathbf{B}^{\mathrm{T}}+i\mathbf{C}^{\mathrm{T}}[/tex]. It implies the fact [tex]\mathbf{B}^{\mathrm{T}}+i\mathbf{C}^{\mathrm{T}}=\mathbf{B}-\mathrm{i}\mathbf{C}[/tex]. [tex]\mathbf{B}[/tex] is symmetric and [tex]\mathbf{C}[/tex] is anti-symmetric. FALSE
Second
If A is diagonalizable and its eigenvalues are [tex]\{\lambda_1,\lambda_2,\cdots,\lambda_n\}[/tex], then [tex]\prod_{k=1}^{n}(x-\lambda_k)=0[/tex] has n different solutions
My solution
Matrix is diagonalizable, then [tex]\lambda_i\ne\lambda_j[/tex] for [tex]i\ne j[/tex]. So polynomial has n different soln's. TRUE
Thank you very much for your help...