- #1
robertjordan
- 71
- 0
Homework Statement
If ##I## is a proper Ideal in a commutative ring ##R##, then ##R## has a subring isomorphic to ##\frac{R}{I}##.
Book says false...
Homework Equations
##I## being a proper ideal in ##R## means ##I## is a proper subset of ##R## where
(i) if ##a,b\in{R}## then ##a+b\in{R}##
(ii) ##0\in{R}## (Where 0 is the element in R such that for all ##r\in{R}##, ##r+0=r##
(iii) ##a\in{I}## and ##r\in{R}## implies ##ar\in{I}##
##\frac{R}{I}={[a]: a\in{R}}## where ##[a]= {a+r : r\in{R}}##
If ##b\in{[a]}## that means ##b\equiv{a}\pmod{I}## which means ##(b-a)\in{I}##
The identity of ##\frac{R}{I}## is ##[1]## where ##1## is the identity of R.
A subring ##S## of ##R## is a subset of ##R## where:
(i) ##a,b\in{S}## implies ##a+b\in{S}## and ##ab\in{S}##
(ii) ##0\in{S}## s.t. ##a+0=a## (this is the same 0 as R)
(iii) ##1\in{S}## s.t. ##a*1=a## (this is the same 1 as R)
(iv) for every ##a\in{S}##, there is a ##(-a)\in{S}## such that ##a+(-a)=0##
(v) ##(ab)c=a(bc)##
(vi) ## (a+b)+c = a+(b+c)##
(vii) ## c*(a+b)= ca+cb##A ring homomorphism from ##R## to ##\frac{R}{I}## is a function ##f: R\rightarrow \frac{R}{I}## such that for all ##x,y\in{R}##, ##f(xy)=f(x)f(y)## and ##f(x+y)=f(x)+f(y)## and ##f(1_{R})=1_{\frac{R}{I}}##.
The Attempt at a Solution
If ##S## is a subring of ##R##, we know by property (iii) that ##1\in{S}##.
Now ##I## being a proper ideal of R implies ##1\not{\in}{I}## because if ##1\in{I}## then, for all ##r\in{R}##, ##r*1\in{I}## which would mean ##I=R## which is not true because ##I## is a proper ideal.
So if there was an isomorphism ##f## from ##S## to ##{R}{I}##, we would have to map the ##1## of ##R## to the ##1## of ##\frac{R}{I}##. Well the ##1## of ##\frac{R}{I}## is ##[1]## which is all the elements in ##R## that are congruent to ##1## modulo I. (AKA all the ##r\in{R}## such that ##r-1\in{I}##. I was hoping to show this means ##1\in{[1]}## which is a contradiction because ##1\not{\in}I##. But perhaps showing that ##\frac{R}{I}## has more elements than ##R## would be a better way to show there can be no isomorphism between them?Thanks
Last edited: