Trying to derive Gauss' law using a cylindrical surface

  • #1
annamal
387
33
When I try to derive Gauss's law with a straight line of charge with density ##\lambda## through a cylindrical surface of length L and radius R,
$$\vec E = \frac{\lambda*L}{4\pi\epsilon*r^2}$$
$$A = 2\pi*r*L$$
$$\vec E*A = \frac{\lambda *L^2}{2\epsilon*r} \neq \frac{q_{enc}}{\epsilon}$$
What am I doing wrong?
Screen Shot 2022-04-24 at 2.30.39 PM.png
 
Physics news on Phys.org
  • #2
annamal said:
$$\vec E = \frac{\lambda*L}{4\pi\epsilon*r^2}$$
Don't confuse the field from a point charge with that of a line of charge. Look it up!
 
  • #3
First of all your "syntax checker" should alarm you that you have equated a vector with a scalar!

I guess you are considering an "infinitely long" homogeneous line-charge along the ##z## axis of a cylindrical coordinate system. Now think about the symmetry of the problem, i.e., in which direction must the electric field point, and then use an arbitrary cylindrical volume, ##V##, with the axis along the line-charge distribution and evaluate carefully Gauss's Law,
$$\int_{\partial V} \mathrm{d}^3 \vec{f} \cdot \vec{E}=\frac{1}{\epsilon_0} Q_V,$$
where ##\partial V## is the boundary of the cylinder (with the surface-normal vectors pointing out of this cylinder), and ##Q_V## is the charge inside the considered cylindrical volume, ##V##.
 

Similar threads

Back
Top