- #1
phoenix-anna
- 11
- 6
Summary:: Show that every infinite Turning-recognizable language has an infinite decidable subset
Sipser's Theory of Computation, third edition, chapter three contains and exercise that asks us to demonstrate this. I don't know how to do this; I have certain ideas. We could modify the recognizer to reject strings whose prefix matches the shortest strings on which the recognizer doesn't halt. This machine would, I believe, decide a subset of the original recognized language. However, it is not clear that the resulting subset is non-empty, let alone infinite.
Sipser's Theory of Computation, third edition, chapter three contains and exercise that asks us to demonstrate this. I don't know how to do this; I have certain ideas. We could modify the recognizer to reject strings whose prefix matches the shortest strings on which the recognizer doesn't halt. This machine would, I believe, decide a subset of the original recognized language. However, it is not clear that the resulting subset is non-empty, let alone infinite.