- #1
askmathquestions
- 65
- 6
This might seem like a novice question, but let's suppose we have a vector ##x## and we want to turn it into vector ##y##. Well, what square matrix multiplied on ##x## accomplishes this?
As an example, let's work with a ##2 \times2## case:
##x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}## and ##y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}##, then what transform ##T = \begin{bmatrix} t_{1,1} & t_{1,2} \\ t_{2,1} & t_{2,2} \end{bmatrix}## makes the equation ##Tx = y## true?
As an example, let's work with a ##2 \times2## case:
##x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}## and ##y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}##, then what transform ##T = \begin{bmatrix} t_{1,1} & t_{1,2} \\ t_{2,1} & t_{2,2} \end{bmatrix}## makes the equation ##Tx = y## true?