- #36
Jun Pan
- 19
- 1
1, For Earth (x,y,z,t) chosen as 'rest' frame, spaceship (x',y',z',t') move away at speed v; for spaceship(x',y',z',t') chosen as 'rest' frame, Earth (x,y,z,t) moves away at speed -v. 2, When t=t'=0, let x=x'=0, or let two coordinate systems have the same start point. 3, According to the principle of relativity, physical law should be the same in each system except the v change sign and they have simultaneous time at the beginning.Orodruin said:No, this is wrong precisely because of the simultaneity of relativity. The spaceship does not have the same rest frame and applying the time dilation formula without taking relativity of simultaneity into account, you will be missing a large part of the time for the Earth observer. The spaceship changes system and that changes which event on the Earth is simultaneous with the turnaround.
So I do not think there is problem of simultaneity. If the twin on the Earth thinks the twin in the spaceship is younger, the twin in the spaceship also thinks the twin on the Earth is younger. Otherwise, the principle of relativity would be violated. I think there maybe problem in your geometry view. From (x,y,z,t), the turning point of spaceship is the halfway point (xh) in (x,y,z,t). From (x',y',z',t'), the corresponding point of xh in (x',y',z',t') has larger value than xh, written as x'(xh) (x'(xh)>xh). However x'(xh) is the coordinate in (x',y',z',t') and it seems to me in your geometry view, x'(xh) is treated as it is in (x,y,z,t). I think this is the cause of 'simultaneity problem' you mention, which I think is not right.