- #1
Bashyboy
- 1,421
- 5
Homework Statement
I have two conjectures whose truth I am interested in. The first is, "If ##\tau, \sigma \in S_n## are disjoint, then ##\tau \sigma = e## if and only if ##\tau = e## and ##\sigma = e##., where ##e## denotes the identity permutation." The second is, "If ##\tau## and ##\sigma## are disjoint, then ##\tau^n## and ##\sigma^n## are disjoint for every integer ##n##.
Homework Equations
The Attempt at a Solution
I think I may have a proof of the first, but I am hoping someone can help me clean it up and clarify a few notions: Suppose that ##\tau## and ##\sigma## are disjoint, satisfying ##\tau \sigma = e##. Then ##(\tau \circ \sigma)(a) = \tau(\sigma(a)) = a## for all ##a \in \{1,...,n\}##. Let ##a## be a positive integer not appearing in ##\sigma##'s cycle decomposition but in ##\tau##'s. Then ##\tau(\sigma(a)) = a## or ##\tau(a) = a##, which is a contradiction unless ##\tau = e## and therefore ##\sigma = e##.
What exactly does it mean for "##a## not to appear on the cycle decomposition?" I can construe that as meaning ##\tau(a) = a##.
Here is an attempt at proving the second conjecture: Suppose that ##\tau## and ##\sigma## are disjoint permutations. When ##n=1##, the claim follows trivially. So suppose the claims holds for all such cycles raised to the ##n## power. Then ##\tau^{n+1} = \tau^n \tau## and ##\sigma^{n+1} = \sigma^n \sigma##. By the induction hypothesis, ##\tau_n## and ##\sigma^n## are disjoint...
At this point, it seems that I would need something like the following to be true: If ##\tau_1##, ##\sigma_1## and ##\tau_2##, ##\sigma_2## are pairs of disjoint permutations, then ##\tau_1 \tau_2## and ##\sigma_1 \sigma_2## are disjoint permutations. Before I go any further, however, I would like to have my one proof verified and all these conjectures corroborated.
Thanks!