- #1
Hijaz Aslam
- 66
- 1
Homework Statement
The anti-derivative of ∫##\frac{sinx}{sin^2x+4cos^2x}## is ##\frac{1}{\sqrt{3}}tan^{-1}((\frac{1}{\sqrt{3}})g(x))+C## then ##g(x)## is equal to :
a. ##secx##
b. ##tanx##
c. ##sinx##
d. ##cosx##
Homework Equations
##d(cosx)=-sinx dx##
The Attempt at a Solution
I tried the problem the following way:
[tex]\int \frac{sinx}{sin^2x+4cos^2x}\, dx=\int \frac{sinx}{1+3cos^2x}\, dx[/tex]
Let ##t=cosx##. Therefore##-dt=sinx dx##
Therefore [tex]I=\int \frac{-dt}{1+3t^2}=-\frac{1}{\sqrt{3}}tan^{-1}(\sqrt{3}cosx)[/tex]
But my text gives the solution the following way:
[tex]\int \frac{sinx}{sin^2x+4cos^2x}\, dx=\int \frac{tanxsecx}{tan^2x+4}\, dx=\int \frac{tanxsecx}{sec^2x+3}\, dx[/tex]. Let ##t=secx##, therefore:
[tex]I=\int \frac{dt}{t^2+3}=\frac{1}{\sqrt{3}}tan^{-1}(\frac{secx}{\sqrt{3}})[/tex]
So
My answer is : [tex]I_m=-\frac{1}{\sqrt{3}}tan^{-1}(\sqrt{3}cosx)+C[/tex]
Answer in my textbook is: [tex]I_t=\frac{1}{\sqrt{3}}tan^{-1}(\frac{secx}{\sqrt{3}})+C[/tex]
And, I can't find any way to convert ##I_m## to ##I_t##.
Am I wrong somewhere?