- #1
cbarker1
Gold Member
MHB
- 349
- 23
Dear Everybody,
I am trying to learn about the electrodynamics. I am using the textbook, Introduction to Electrodynamics (2nd Ed) by D. J. Griffiths. I am working on the Problem 1.8. The question state:
Prove that the two-dimensional rotation matrix perverse the length of A. (That is, show that $(A_y')^2+(A_z')^2=(A_y)^2+(A_z)^2$)
$\left(\begin{array}{cc} A_y'\\ A_z'\end{array}\right)$=$\left(\begin{array}{cc} cos(\phi) & sin(\phi)\\ -sin(\phi) & cos(\phi) \end{array} \right)$ $\left(\begin{array}{cc} A_y\\A_z\end{array}\right)$
I am struck at the beginning.
I am trying to learn about the electrodynamics. I am using the textbook, Introduction to Electrodynamics (2nd Ed) by D. J. Griffiths. I am working on the Problem 1.8. The question state:
Prove that the two-dimensional rotation matrix perverse the length of A. (That is, show that $(A_y')^2+(A_z')^2=(A_y)^2+(A_z)^2$)
$\left(\begin{array}{cc} A_y'\\ A_z'\end{array}\right)$=$\left(\begin{array}{cc} cos(\phi) & sin(\phi)\\ -sin(\phi) & cos(\phi) \end{array} \right)$ $\left(\begin{array}{cc} A_y\\A_z\end{array}\right)$
I am struck at the beginning.