Two equations "combined" don't give the desired result

  • Thread starter Thread starter nomadreid
  • Start date Start date
  • Tags Tags
    Special relativity
AI Thread Summary
The discussion addresses a potential typo in the Lorentz transformation equation, specifically noting that x' should not be in the denominator of equation (5.6.7). A participant expresses confusion over how to combine this corrected equation with another to derive a relation between time variables t and t'. Initial attempts at substitution and algebraic manipulation resulted in complications, leading to uncertainty about the derivation process. After receiving clarification, the participant realizes a minor mistake in their calculations and successfully resolves the issue. The interaction highlights the importance of careful algebraic manipulation in understanding complex physics equations.
nomadreid
Gold Member
Messages
1,748
Reaction score
243
Homework Statement
From only (A) x'=g(x-vt) and (B) x^2-(ct)^2=x'^2-(ct')^2 derive
(C) t'=g(t-(vx/c^2)),
Relevant Equations
g= gamma = 1/sqrt(1-(v/c)^2) and the equations in the Statement
In https://phys.libretexts.org/Bookshe...__Relativity/5.06:_The_Lorentz_Transformation

First, the equation (5.6.7) apparently has a typo: the x' should not be in the denominator, as one can see by comparing it with the equation just above it from which it was derived. The corrected equation is Equation (A) in the Statement (standard Lorentz transformation).

Then two equations down (unnumbered), the author states the equation (B) in the Statement,
"We combine this with Equation 5.6.7 that relates x and x' to obtain the relation between t and t′:"
and then states the equation (C) in the statement.

How he means to "combine" them is what I don't successfully get. I tried substitution of x' from (A) into (B), and got a mess; I then tried solving (B) for x', and substituting this solution into (A), and got the same mess, that is,
(A) into (B)

first mess.PNG

which doesn't simplify to (C). Either: (a) my algebraic manipulation is wrong; (b) the author is including some other equation in the derivation.
Any indications where this is going wrong would be greatly appreciated. (Yes, there are other ways to derive the relation (C), but I am interested in this author's derivation.)
 
Physics news on Phys.org
nomadreid said:
which doesn't simplify to (C)
Yes it does (up to the sign of the square root).
 
Thanks, Orodruin. OK, I will try again, now with the assurance that I just made some minor mistake made in simplifying. That fully answers my question! Super!
 
update: found the error. It all comes out. Thanks again, Orodruin
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top