- #1
feijjjao
- 2
- 0
Homework Statement
A horizontal cilindre with a piston of mass M = 0.5 kg is filled with air (the specific heat of air is Cp = 1000 Joule/Grad*kmole). The heating of the gas results in the piston's accelerated displacement (with constant acceleration) until the velocity v = 1 m/s. Determine the amount of heat acumulated by the gas during the heating. The energy of one gas mol is U = Cp*T. Ignore the external pressure and the thermical capacities of both the cilindre and piston. The universal gas constant is R = 8.31*10³ Joule/Grad*kmole.
The volume of a room is 100m³ with ambient pressure of 1.02*10^5 Pa. Determine the air mass which left the room after the raise in temperature from 10°C to 25°C. The air density in normal conditions (To = 273K, p0 = 1.01*10^5 Pa) is 1.29kg/m³.
Homework Equations
General gas equations, minding the circumstances:
P1V1 = P2V2
P1/T1 = P2/T2
V1/T1 = V2/T2
PV = nRT
Energy conservation
dU = dQ - dW
The Attempt at a Solution
I guess the solutions comes out rather simply once you know the conditions. The problem is I don't exactly know how the various factors (pressure, volume, density) are linked, how they affect each other. And thus I have no ground for assumptions. Could someone explain these for me? Thanks!
Last edited: