- #1
Thunder_Jet
- 18
- 0
Hi!
I would like to ask everyone's opinion about this wavefunction in the momentum representation:
ψ(p) = N[θ(-p)exp(ap/hbar) + θ(p)exp(-ap/hbar)], where N is a normalization constant, a > 0, and θ(p) is a function defined as θ(p) = 0 for p > 0 and also θ(p) = 0 for p < 0.
I think the θ function has been written incorrectly, right? It is just zero all over the momentum space.
What I did is I assume it to be a step function, replacing θ(p) = 0 for p > 0 with θ(p) = 1 for p > 0. Now, when calculating for the probability density of finding the particle at x, I used Fourier transform to do it. But to my surprise, the exponential terms were canceled and I am left with only dx in the integration. What do you think did I miss?
Thanks everyone and I am hoping for your suggestions!
I would like to ask everyone's opinion about this wavefunction in the momentum representation:
ψ(p) = N[θ(-p)exp(ap/hbar) + θ(p)exp(-ap/hbar)], where N is a normalization constant, a > 0, and θ(p) is a function defined as θ(p) = 0 for p > 0 and also θ(p) = 0 for p < 0.
I think the θ function has been written incorrectly, right? It is just zero all over the momentum space.
What I did is I assume it to be a step function, replacing θ(p) = 0 for p > 0 with θ(p) = 1 for p > 0. Now, when calculating for the probability density of finding the particle at x, I used Fourier transform to do it. But to my surprise, the exponential terms were canceled and I am left with only dx in the integration. What do you think did I miss?
Thanks everyone and I am hoping for your suggestions!