- #1
James889
- 192
- 1
Hey,
I need to evaluate [tex]\int_{1}^{5}(6-2x)\sqrt{5-x}dx[/tex]
So.
[tex]\tex{Let ~~u} = 6-2x~~ \tex{then}~~ du = 2[/tex]
[tex]\frac{1}{2}~du = dx[/tex]
New limits:
[tex]x = 5 \longrightarrow u = -4[/tex]
[tex]x = 1 \longrightarrow u = 4[/tex]
now, [tex]-\frac{1}{2}\int^{4}_{-4} u*\sqrt{5-x}[/tex]
and now for the partial integration.
[tex] u \sqrt{5-x}~~ - \int 1\times \sqrt{5-x} = u \sqrt{5-x} ~~-\frac{2}{3}(5-x)^{3/2}[/tex]
Substituting in my limits of integration:
[tex](6-2*4) \times \sqrt{5-4} ~~-\frac{2}{3}(5-4)^{3/2} - (6-2*(-4)) \times \sqrt{5-(-4)} ~~-\frac{2}{3}(5-(-4))^{3/2} == \tex{wrong!}[/tex]
what is it that I am doing wrong?
//James
I need to evaluate [tex]\int_{1}^{5}(6-2x)\sqrt{5-x}dx[/tex]
So.
[tex]\tex{Let ~~u} = 6-2x~~ \tex{then}~~ du = 2[/tex]
[tex]\frac{1}{2}~du = dx[/tex]
New limits:
[tex]x = 5 \longrightarrow u = -4[/tex]
[tex]x = 1 \longrightarrow u = 4[/tex]
now, [tex]-\frac{1}{2}\int^{4}_{-4} u*\sqrt{5-x}[/tex]
and now for the partial integration.
[tex] u \sqrt{5-x}~~ - \int 1\times \sqrt{5-x} = u \sqrt{5-x} ~~-\frac{2}{3}(5-x)^{3/2}[/tex]
Substituting in my limits of integration:
[tex](6-2*4) \times \sqrt{5-4} ~~-\frac{2}{3}(5-4)^{3/2} - (6-2*(-4)) \times \sqrt{5-(-4)} ~~-\frac{2}{3}(5-(-4))^{3/2} == \tex{wrong!}[/tex]
what is it that I am doing wrong?
//James