Uncertainty: Systematic & Random

AI Thread Summary
Absolute uncertainty is defined as the total amount by which a measured value may differ from the actual value, contrasting with fractional uncertainty, which is the ratio of absolute uncertainty to the measured value. The discussion highlights a preference for the term "systematic error" over "systematic uncertainty," suggesting that total error comprises both systematic and random components. In repeated measurements of the same quantity, these errors can be interpreted as either fractional or absolute. When measuring different quantities, the nature of these errors may change, with systematic errors potentially remaining constant in fractional terms while random errors may be constant in absolute terms. The conversation emphasizes the complexity of understanding and categorizing measurement errors.
member 731016
Homework Statement
Dose anybody please know what the relationship between absolute uncertainty, systematic uncertainty and random uncertainty is?
Relevant Equations
Equation above.
I am thinking that it might could be absolute uncertainty = systematic uncertainty + random uncertainty.

Many thanks!
 
Physics news on Phys.org
Any particular reason ?
 
  • Like
Likes member 731016
As far as I am aware, absolute uncertainty means the absolute amount by which the measured value may differ from the actual value. This is as opposed to fractional uncertainty, which is absolute uncertainty divided by the measured value.
And I find "systematic uncertainty" conceptually awkward. Systematic error is the more usual expression.
So I would say that total error is systematic + random, where each of those may be (consistently) interpreted as fractional or absolute.

That is with regard to repeated measurements which are in principle of the same quantity. If they are for different quantities (because some parameter is being varied) these errors may vary in different ways. E.g. the systematic fractional error my remain constant, while for random error it is the absolute error that is constant.
 
Last edited:
  • Like
Likes member 731016
BvU said:
Any particular reason ?
haruspex said:
As far as I am aware, absolute uncertainty means the absolute amount by which the measured value may differ from the actual value. This is as opposed to fractional uncertainty, which is absolute uncertainty divided by the measured value.
And I find "systematic uncertainty" conceptually awkward. Systematic error is the more usual expression.
So I would say that total error is systematic + random, where each of those may be (consistently) interpreted as fractional or absolute.

That is with regard to repeated measurements which are in principle of the same quantity. If they are for different quantities (because some parameter is being varied) these errors may vary in different ways. E.g. the systematic fractional error my remain constant, while for random error it is the absolute error that is constant.
Thank you for your replies @BvU and @haruspex!

@BvU I can't remember now sorry.

@haruspex thank you that helps

Many thanks!
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top