- #36
A. Neumaier
Science Advisor
- 8,637
- 4,684
More precisely, the product in question is the product of the widths of the ranges.PeterDonis said:You can only measure one operator with a single measurement, but the choice of possible operators to measure is much wider than just "position" and "momentum" as those operators are described in introductory QM textbooks. (And pretty much all of the operators described in introductory QM textbooks are highly idealized ones that can never be exactly realized in practice.) In particular, it is possible to choose an operator that gives results that say something like: "the position is within some range x1 to x2, and the momentum is within some range p1 to p2", where different operators of this type will have different widths of the ranges for position and momentum, and the product of the two ranges can be no smaller than a finite limit.
For example, consider the operator ##\Delta:=(Q-x)^2/x_0^2+(P-p)^2/p_0^2##, where ##x_0## and ##p_0## are suitable units of position and momentum. One can measure (in principle) one of its eigenvalues ##\delta## and interpret the result as verification of the joint values ##x\pm\sqrt{\delta}x_0## of ##Q## and ##p\pm\sqrt{\delta}p_0## of ##P##. But the spectrum of the operator ##\Delta## is bounded from below by a constant depending on ##x_0## and ##p_0## in a way such that the resulting accuracy is never better than what the uncertainty relation says.