- #1
Kashmir
- 468
- 74
Hartle, gravity. Chapter 5
"A four-vector is defined as a directed line segment in four-dimensional flat spacetime in the same way as a three-dimensional vector (to be called a three-vector in this chapter) can be defined as a direcied line segment in three-dimensional Euclidean Space"For vectors in 3D, we know that vectors exist independently of the coordinate system used to measure them. Like a position vector. It exists there, it's tip at a point in the 3D space.
We may choose different coordinates to write the vector but all of them say the same thing. They all are representing a vector whose tip ends at the same point.
So similarly should I as the book suggests, think of spacetime as being out there independently of coordinate system, and for example a displacement vector in spacetime is just the line segment from one point to another.
Now once I choose a coordinate system I get components of the vector ( which is independent of the coordinate system) in that coordinate system.
If I apply a Lorenzt boost, I'm actually choosing another coordinate system which thus changes the coordinates of the vector. However they actually represent the same vector whose tip ends at the same point, although that point has different coordinates in different frames.
Is that a correct understanding?
"A four-vector is defined as a directed line segment in four-dimensional flat spacetime in the same way as a three-dimensional vector (to be called a three-vector in this chapter) can be defined as a direcied line segment in three-dimensional Euclidean Space"For vectors in 3D, we know that vectors exist independently of the coordinate system used to measure them. Like a position vector. It exists there, it's tip at a point in the 3D space.
We may choose different coordinates to write the vector but all of them say the same thing. They all are representing a vector whose tip ends at the same point.
So similarly should I as the book suggests, think of spacetime as being out there independently of coordinate system, and for example a displacement vector in spacetime is just the line segment from one point to another.
Now once I choose a coordinate system I get components of the vector ( which is independent of the coordinate system) in that coordinate system.
If I apply a Lorenzt boost, I'm actually choosing another coordinate system which thus changes the coordinates of the vector. However they actually represent the same vector whose tip ends at the same point, although that point has different coordinates in different frames.
Is that a correct understanding?