- #1
Dustinsfl
- 2,281
- 5
Apply Theorem 1.4 to evaluate various series of constants.
Theorem 1.4: Let $f$ be periodic and piecewise differentiable. Then at each point $\theta$ the symmetric partial sums
$$
S_N(\theta) = \sum_{n=-N}^Na_ne^{in\theta}
$$
converge to $\frac{1}{2}\left[f(\theta)+f(-\theta)\right]$; if $f$ is continuous at $\theta$, they converge to $f(\theta)$.
So taking this series:
$$
2\sum_{n =1}^{\infty}\left[\frac{1}{2n-1}\sin(2n-1)\theta - \frac{1}{2n}\sin 2n\theta\right]
$$
What am I supposed to do?
Theorem 1.4: Let $f$ be periodic and piecewise differentiable. Then at each point $\theta$ the symmetric partial sums
$$
S_N(\theta) = \sum_{n=-N}^Na_ne^{in\theta}
$$
converge to $\frac{1}{2}\left[f(\theta)+f(-\theta)\right]$; if $f$ is continuous at $\theta$, they converge to $f(\theta)$.
So taking this series:
$$
2\sum_{n =1}^{\infty}\left[\frac{1}{2n-1}\sin(2n-1)\theta - \frac{1}{2n}\sin 2n\theta\right]
$$
What am I supposed to do?