I Understanding Absorption Laws (Boolean Algebras)

  • I
  • Thread starter Thread starter mathrookie
  • Start date Start date
  • Tags Tags
    Logic
AI Thread Summary
The discussion revolves around understanding the absorption law in Boolean algebra, specifically the expression a ∨ (a ∧ b). The original poster struggles to derive the conclusion a from their steps, particularly in obtaining the expression a ∧ (⊤ ∨ b). Other participants suggest using the distribution law to simplify the equation correctly. They also recommend utilizing a truth table to verify the equality of the expressions. The conversation highlights the importance of correctly applying Boolean algebra laws to reach the desired result.
mathrookie
Messages
1
Reaction score
0
TL;DR Summary
I cannot apply distribution law
I can't understand how absorption law is obtained. I get following steps.##a∨(a∧𝑏) = (a∧⊤)∨(a∧𝑏)##
##=(a∨a)∧(a∨b)∧(⊤∨a)∧(⊤∨b)##
then,

I come up with ##=a∧(a∨b)∧⊤∧⊤## so ##=a∧(a∨b)##

But, I cannot get ##a∧(⊤∨𝑏)##, as shown on here, therefore ##a##.

Can you help me? I cannot obtain ##a∧(⊤∨𝑏)## Some people say in other answers in different questions, it is obtained by distribution law. However, what I got by this is the first equation.
[1]: https://proofwiki.org/wiki/Absorption_Laws_(Boolean_Algebras)
 
Physics news on Phys.org
mathrookie said:
TL;DR Summary: I cannot apply distribution law

I can't understand how absorption law is obtained. I get following steps.##a∨(a∧𝑏) = (a∧⊤)∨(a∧𝑏)##
##=(a∨a)∧(a∨b)∧(⊤∨a)∧(⊤∨b)##
Your expression above doesn't help.
Follow the logic in your link to get this:
##a ∨ (a∧𝑏) = (a∧⊤)∨(a∧𝑏)##
##= a ∧ (T ∨ b) ## ∧ distributes over ∨
## = a ∧ T = a## T ∨ b = T
Edited to fix earlier typo.
mathrookie said:
then,

I come up with ##=a∧(a∨b)∧⊤∧⊤## so ##=a∧(a∨b)##

But, I cannot get
##a∧(⊤∨𝑏)##, as shown on here, therefore ##a##.

Can you help me? I cannot obtain
##a∧(⊤∨𝑏)## Some people say in other answers in different questions, it is obtained by distribution law. However, what I got by this is the first equation.
[1]: https://proofwiki.org/wiki/Absorption_Laws_(Boolean_Algebras)
 
Last edited:
Mark44 said:
Your expression above doesn't help.
Follow the logic in your link to get this:
##a ∨ (a∧𝑏) = (a∧⊤)∨(a∧𝑏)##
##= a ∧ (T ∧ b) ## ∧ distributes over ∨
## = a ∧ T = a## T ∨ b = T
Slight typo here, should be ##a\wedge(\top\vee b)##
OP, you can also use a truth table to see that the two expressions must be equal to a.
 
TeethWhitener said:
Slight typo here, should be ##a\wedge(\top\vee b)##
Right. I've fixed it in my post.
 
  • Like
Likes TeethWhitener
I was reading a Bachelor thesis on Peano Arithmetic (PA). PA has the following axioms (not including the induction schema): $$\begin{align} & (A1) ~~~~ \forall x \neg (x + 1 = 0) \nonumber \\ & (A2) ~~~~ \forall xy (x + 1 =y + 1 \to x = y) \nonumber \\ & (A3) ~~~~ \forall x (x + 0 = x) \nonumber \\ & (A4) ~~~~ \forall xy (x + (y +1) = (x + y ) + 1) \nonumber \\ & (A5) ~~~~ \forall x (x \cdot 0 = 0) \nonumber \\ & (A6) ~~~~ \forall xy (x \cdot (y + 1) = (x \cdot y) + x) \nonumber...
Back
Top