- #1
LagrangeEuler
- 717
- 20
- Homework Statement
- For two Hermitian matrices ##A## and ##B## with eigenvalues larger then ##1##, show that
##AB## has eigenvalues ##|\lambda|>1##.
- Relevant Equations
- Any hermitian matrix ##A## could be written as
[tex]A=\sum_k \lambda_k|k \rangle \langle k|[/tex]
where ##|k\rangle \langle k|## is orthogonal projector ##P_k##.
Product of two Hermitian matrix ##A## and ##B## is Hermitian matrix only if matrices commute ##[A,B]=0##. If that is not a case matrix ##C=AB## could have complex eigenvalues. If
[tex]A=\sum_k \lambda_k|k \rangle \langle k|[/tex]
[tex]B=\sum_l \lambda_l|l \rangle \langle l|[/tex]
[tex]AB=\sum_{k,l}\lambda_k\lambda_l|k \rangle \langle k|l\rangle \langle l|[/tex]
Now I am confused what to do. Definitely, ##\langle k|l \rangle \leq 1 ##. Could you help me?
[tex]A=\sum_k \lambda_k|k \rangle \langle k|[/tex]
[tex]B=\sum_l \lambda_l|l \rangle \langle l|[/tex]
[tex]AB=\sum_{k,l}\lambda_k\lambda_l|k \rangle \langle k|l\rangle \langle l|[/tex]
Now I am confused what to do. Definitely, ##\langle k|l \rangle \leq 1 ##. Could you help me?