Understanding Driving Force in the m2 Equation: Explained by Experts

  • Thread starter Thread starter ANAli
  • Start date Start date
  • Tags Tags
    Force
AI Thread Summary
The discussion centers on the confusion surrounding the second term in the m2 equation, b1(x'2 - x'1), which is perceived as negative despite being a factor in m2's motion. It clarifies that a driving force is an external force that initiates motion, while friction is an internal force that does not drive motion but rather depends on it. The relationship between the frictional forces acting on m1 and m2 is explained through Newton's third law, emphasizing their equal magnitude and opposite direction. Examples are provided to illustrate how the signs in the equations align with expected motion outcomes. Understanding these concepts resolves the initial confusion about the nature of driving forces in the context of the m2 equation.
ANAli
Messages
12
Reaction score
5
Homework Statement
(Problem 3.26; Classical Dynamics of Particles and Systems)
Figure 3-B illustrates a mass m1 driven by a sinusoidal force whose frequency is w. The mass m1 is attached to a rigid support by a spring of force constant k and slides on a second mass m2. The frictional force between m1 and m2 is represented by the damping parameter b1 and the friction force between m2 and the support is represented by b2. Construct the electrical analog of the system, and calculate the impedance.
Relevant Equations
Inserted image of equations in question. These are from the solution manual.
565-3-26p-i10.png
1654272776818.png


I am having trouble understanding why the second term in the m2 equation, b1(x'2 - x'1), is a negative term. Given that this force is the reason why m2 is moving in the first place, why is it not considered a driving force? I think that I don't have a clear understanding of what driving force means.
 
Last edited by a moderator:
Physics news on Phys.org
A driving force is an external force imposed on the system that drives its motion. The frictional force is not driving because it is an internal force between different parts of your system that is not forcing the motion of the system but instead its form depends on the motion of the system.

Since it is the frictional force from 1 on 2, it is the 3rd law pair of the frictional force from 2 on 1. It must be equal in magnitude and opposite in direction.
 
What happens if the value of b1 is so big that v1=v2?
 
Orodruin said:
A driving force is an external force imposed on the system that drives its motion. The frictional force is not driving because it is an internal force between different parts of your system that is not forcing the motion of the system but instead its form depends on the motion of the system.

Since it is the frictional force from 1 on 2, it is the 3rd law pair of the frictional force from 2 on 1. It must be equal in magnitude and opposite in direction.
Got it. I understand. Thank you!
 
ANAli said:
Homework Statement:: (Problem 3.26; Classical Dynamics of Particles and Systems)

I am having trouble understanding why the second term in the m2 equation, b1(x'2 - x'1), is a negative term. Given that this force is the reason why m2 is moving in the first place, why is it not considered a driving force? I think that I don't have a clear understanding of what driving force means.
One way to see if the signs make sense is to consider specific cases. For example, if ##m_1## is moving to the right (##\dot x_1>0##) and ##m_2## is at rest (##\dot x_2=0##), the top mass will push the bottom mass to the right so you would expect ##\ddot x_2>0##. In this case, the second equation reduces to ##m_2 \ddot x_2 = + b_1 \dot x_1 > 0##, which is in agreement. Similarly, if you consider the case where ##\dot x_2>0## and ##\dot x_1 = 0##, you'll see the signs of the other two terms are correct as well.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top