Understanding Entanglement and Born's Rule in Photon Polarization Experiments

In summary, according to Born's rule, the probability Alice detects photon 1 is:##\mathcal{P}_A=<21|P_A|12>##The probability Bob subsequently detects photon 2 with a polarizer oriented ##\theta_B## is then ##\mathcal{P}_A## times a ##\cos^2## from the Malus law:##\mathcal{P}_B=(\cos^2\psi\cos^2\theta_A+\sin^2\psi\sin^2\theta_A)\cos^2(\theta_A-\theta_B
  • #1
mbond
41
7
Let be an entangled pair of photons 1 and 2, with the same polarization. The wave function is
##|12>=\cos\psi|HH>+\sin\psi|VV>## with ##\psi## the angle of polarization. The first ##H## (##V##) in ##|HH>##
(##|VV>##) is photon 1, and the second one is photon 2.

Alice observes photon 1 with a polarizer oriented ##\theta_A##. The corresponding projector is
##P_A=_1|\theta_A><\theta_A|_1## with ##|\theta_A>=\cos\theta_A|H>+\sin\theta_A|V>##. The index ##_1## is to tell the projector applies only to photon 1 (not sure about the notation...). According to Born's rule, the probability Alice detects photon 1 is:

##\mathcal{P}_A=<21|P_A|12>##

##\hphantom{\mathcal{P}_A}=(\cos\psi<H|<H|\theta_A>+\sin\psi<V|<V|\theta_A>)##
##(\cos\psi<\theta_A|H>|H>+\sin\psi<\theta_A|V>|V>)##

##\hphantom{\mathcal{P}_A}=\cos^2\psi\cos^2\theta_A+\sin^2\psi\sin^2\theta_A##

After Alice has observed photon 1 (detecting it or not), the wave function ##|12>## no longer exists (it has collapsed). The probability that Bob subsequently detects photon 2 with a polarizer oriented ##\theta_B## is then ##\mathcal{P}_A## times a ##\cos^2## from the Malus law:

##\mathcal{P}_B=(\cos^2\psi\cos^2\theta_A+\sin^2\psi\sin^2\theta_A)\cos^2(\theta_A-\theta_B)##

Is that correct? I would be grateful if someone pointed me the errors...
 
Last edited:
Physics news on Phys.org
  • #2
Looks ok.

However, the bra corresponding to ##\ket{12}## should be ##\bra{12}## (one does not change the order of particles).
 
  • Like
Likes mbond and vanhees71
  • #3
Let be 2 non-entangled photons ##|\phi_i>=\cos\phi_i|H>+\sin\psi_i|V>## with i=1 or 2. The wave function of the 2 photons is then
##|\psi_1\psi_2>=\cos\psi_1\cos\phi_2|HH>+\cos\psi_1\sin\psi_2|HV>+\sin\psi_1\cos\psi_2|VH>+\sin\psi_1\sin\psi_2|VV>##

Alice makes the wave function interact with a polarizer ##<\theta_A|=\cos\theta_A<H|+\sin\theta_A<V|## and is left with the wave function
##|\psi_A>=<\theta_A|\psi_1\psi_2>=cos(\theta_A-\psi_1)|\psi_2>##
The probability she detects a photon is given by Born's rule:
##<\psi_1\psi_2|\theta_A><\theta_A|\psi_1\psi_2>=\cos^2(\theta_A-\psi_1)<\psi_2|\psi_2>=\cos^2(\theta_A-\psi_1)##
A problem is that the whole wave function looks collapsed while it is only ##|\psi_1>##.

If Bob measures ##|\psi_A>## with a polarizer ##\theta_B##, he gets a probability
##<\psi_A| \theta_B><\theta_B|\psi_A>=\cos^2(\theta_A-\psi_1)\cos^2(\theta_B-\psi_2)##
which is the probability that both Alice and Bob detect a photon.

When the photons are entangled, Alice is left with
##|\psi_A>=\cos\psi\cos\theta_A|H>+\sin\psi\sin\theta_A|V>##
If Bob measures ##|\psi_A>## he has the probability:
##<\psi_A|\theta_B><\theta_B|\psi_A>=(\cos\psi\cos\theta_A\cos\theta_B+\sin\psi\sin\theta_A\sin\theta_B)^2##
but there is no Malus law there!?

Either Born's rule doesn't work with 2 photons, or, more likely, I don't apply it correctly...
 
  • #4
If the photons are entangled, the measurement outcomes are not independent anymore, because entanglement describes strong correlations, i.e., the joint probability for both Bob and Alice detecting a photon doesn't factorize anymore as in your case with unentangled photons, which describes a state, where the photons are uncorrelated.

To see whether you calculation is correct, I'd need to know the specific entangled state the photons are prepared in. Also your notation is a bit vague!
 
  • #5
The Born rule gives you the probability of the outcome of a measurement, but not the state after the measurement. That is given by the eigenstate of the observable corresponding to the measurement result.
 
  • Like
Likes vanhees71
  • #6
I think, in principle the calculations are correct, but one should use the correct notation. If I understand it right, what's considered is the joint probability to find the photons at a certain linear-polarization state at A's and B's detector. The correct formula for that probability is
$$P(\Theta_a,\Theta_b)=\langle \Psi|\hat{P}_{A}(\Theta_A) \otimes \hat{P}_{B}(\Theta_B)|\Psi \rangle,$$
for any two-photon state
$$|\Psi \rangle = \sum_{h_1,h_2} \Psi(h_1,h_2) |h_1 \rangle_A \otimes |h_2 \rangle,$$
where ##h_j \in \{V,H\}## run over the polarization basis used to write down these vectors. The ##\hat{P}## are the corresponding single-photon-polarization projection operators.
 
  • Like
Likes dextercioby
  • #7
Thank you for the answers.
I note ##|HH>\equiv|H>\otimes|H>##, the same with V. With this notation, the wave function of the entangled pair is ##|\psi>=\cos\psi|HH>+\sin\psi|VV>##. The projectors of Alice and Bob are, respectively ##\hat{P}_A=|\theta_A><\theta_A|## and ##\hat{P}_B=|\theta_B><\theta_B|## with ##|\theta_A>=\cos\theta_A|H>+\sin\theta_A|V>##, the same with B.

I would like to calculate the probability that Alice and Bob observe the same result (the entangled photons go through their respective polarizer, or are absorbed). (When ##\theta_A-\theta_B=\pm120°## I expect that Alice and Bob get the same outcome 25% of the time, independently of ##\psi##).
 
  • Like
Likes vanhees71
  • #8
Then you just have to do the algebra and calulate
$$P(h_A,h_B)=\langle \psi|\hat{P}_A \otimes \hat{P}_B|\psi \rangle.$$
I guess the result will not only depend on the difference, ##\Theta_A-\Theta_B##, because that's the case only for the singlet state, ##|\psi_{\text{sing}}=(|HV \rangle-|VH \rangle)/\sqrt{2}##.
 
  • Like
Likes mbond
  • #9
mbond said:
I would like to calculate the probability that Alice and Bob observe the same result (the entangled photons go through their respective polarizer, or are absorbed). (When ##\theta_A-\theta_B=\pm120°## I expect that Alice and Bob get the same outcome 25% of the time, independently of ##\psi##).
For theta=+/-120 degrees on Type I photon entangled pairs per your example: Yes. they get the same output 25% of the time when a polarizing beam splitter (PBS) is used. When a *polarizer* is used (i.e. half absorbed), the stats are different:

No result: 12.5% (of course you actually can't actually count these because they were both absorbed)
Same result (Alice and Bob record hits): 12.5% (actual would be about 14.3%)
Alice only: 37.5% (actual would be about 42.9%)
Bob only: 37.5% (actual would be about 42.9%)
 
  • #10
"Then you just have to do the algebra and calculate ##P=<\psi|\hat{P}_A\otimes\hat{P}_B|\psi>##"

Let me do it:
##P=(\cos\psi<HH|+\sin\psi<VV|)|\theta_A><\theta_A|\otimes|\theta_B><\theta_B|(\cos\psi|HH>+\sin\psi|VV>)##
##\hphantom{P}=(\cos\psi<H|\theta_A><H|+\sin\psi<V| \theta_A><V|)|\theta_B><\theta_B|##
##(\cos\psi<\theta_A|H>|H>+\sin\psi<\theta_A|V>|V>)##
##\hphantom{P}=(\cos\psi\cos\theta_A<H|+\sin\psi\sin\theta_A<V|)|\theta_B><\theta_B|(\cos\psi\cos\theta_A>|H>+\sin\psi\sin\theta_A|V>)##
##\hphantom{P}=(\cos\psi\cos\theta_A\cos\theta_B+\sin\psi\sin\theta_A\sin\theta_B)^2##
But there is no Malus law ##\cos^2(\theta_A-\theta_B)## there!? (except for ##\psi=\pi/4##).

EDIT: I think my error is to use a ##\psi## angle; there is no axis there, so no angle, the probabilities for the entangled photons to be HH or VV are equal so there is a ##1/\sqrt{2}## instead.

Thank you very much for the help.
 
Last edited:
  • Like
Likes vanhees71
  • #11
Why do you expect Malus's Law to hold here? The entangled state implies strong correlations between the outcomes of the measurements done at the two photons.
 
  • #12
The experiments to test the Bell inequalities such as the Aspect's one are explained using the XIX century Malus law of classical optics. I think, with entangled photons, using Born's rule is much better, even if it happens to give the same result.
 
  • Like
Likes vanhees71
  • #13
But Malus's Law applies to the simple measurement of a linearly polarized photon with a polarization filter in a direction of an angle ##\alpha## relative to the polarization direction of the photon to be ##\cos^2 \alpha##. That doesn't imply that the joint measurements must obey this law.

Usually they discuss as the initial state the case where ##\psi=\pi/4##, i.e., ##\cos \psi=\sin \psi=\sqrt{2}/2##. Then your formula gives obviously ##P=1/2 \cos^2(\theta_A-\theta_B)##. This is easy to understand in this case: If you put a polarization filter in ##\theta_A## direction in the way of A's photon it's projected to the state
##\cos \theta_A |H \rangle + \sin \theta_A |V \rangle## and so is also the photon at B due to the prepared entengled state. When you put a polarization filter in ##\theta_B## direction to B's photon, then you get, provided A's photon went through the probability ##|\cos \theta_A \cos \theta_B +\sin \theta_A \sin \theta_B|^2=\cos^2 (\theta_A-\theta_B)##. But now this case occurs with a probability of ##1/2##, which explains your result.
 
  • #14
##P_{AB}\equiv P(\theta_A,\theta_B)=\frac{1}{2}\cos^2(\theta_A-\theta_B)##, right from Born's rule, is the probability that both Alice and Bob observe a photon. The probability that Alice's photon is absorbed and not Bob's is ##P_{\bar{A}B}=P(\theta_A+90°,\theta_B)##. One can check that ##P_{AB}+P_{\bar{A}B}+P_{A\bar{B}}+P_{\bar{A}\bar{B}}=1##. The probability Alice and Bob observe the same thing is ##P_{AB}+P_{\bar{A}\bar{B}}=\cos^2(\theta_A-\theta_B)##.
 
  • Like
Likes vanhees71

FAQ: Understanding Entanglement and Born's Rule in Photon Polarization Experiments

What is entanglement in photon polarization experiments?

Entanglement is a phenomenon in quantum mechanics where two or more particles become connected in such a way that the state of one particle is dependent on the state of the other, even if they are separated by large distances. In photon polarization experiments, this means that the polarization state of one photon is connected to the polarization state of another photon, even if they are far apart.

How is entanglement measured in photon polarization experiments?

Entanglement is typically measured by performing a Bell test, which involves measuring the correlation between the polarization states of two entangled photons. If the correlation is higher than what would be expected by classical physics, then it is a sign of entanglement.

What is Born's rule in photon polarization experiments?

Born's rule is a fundamental principle in quantum mechanics that describes how the probability of obtaining a certain measurement result is related to the state of the system being measured. In photon polarization experiments, it is used to calculate the probability of obtaining a certain polarization state for a photon.

How does Born's rule relate to entanglement in photon polarization experiments?

In photon polarization experiments, Born's rule is used to calculate the probability of obtaining a certain polarization state for one photon, given the state of the other entangled photon. This shows the connection between the two particles and how their states are dependent on each other.

What are the applications of understanding entanglement and Born's rule in photon polarization experiments?

Understanding entanglement and Born's rule in photon polarization experiments is crucial for the development of quantum technologies, such as quantum computing and quantum communication. It also helps us better understand the fundamental principles of quantum mechanics and the nature of reality at the smallest scales.

Back
Top