- #1
mbond
- 41
- 7
Let be an entangled pair of photons 1 and 2, with the same polarization. The wave function is
##|12>=\cos\psi|HH>+\sin\psi|VV>## with ##\psi## the angle of polarization. The first ##H## (##V##) in ##|HH>##
(##|VV>##) is photon 1, and the second one is photon 2.
Alice observes photon 1 with a polarizer oriented ##\theta_A##. The corresponding projector is
##P_A=_1|\theta_A><\theta_A|_1## with ##|\theta_A>=\cos\theta_A|H>+\sin\theta_A|V>##. The index ##_1## is to tell the projector applies only to photon 1 (not sure about the notation...). According to Born's rule, the probability Alice detects photon 1 is:
##\mathcal{P}_A=<21|P_A|12>##
##\hphantom{\mathcal{P}_A}=(\cos\psi<H|<H|\theta_A>+\sin\psi<V|<V|\theta_A>)##
##(\cos\psi<\theta_A|H>|H>+\sin\psi<\theta_A|V>|V>)##
##\hphantom{\mathcal{P}_A}=\cos^2\psi\cos^2\theta_A+\sin^2\psi\sin^2\theta_A##
After Alice has observed photon 1 (detecting it or not), the wave function ##|12>## no longer exists (it has collapsed). The probability that Bob subsequently detects photon 2 with a polarizer oriented ##\theta_B## is then ##\mathcal{P}_A## times a ##\cos^2## from the Malus law:
##\mathcal{P}_B=(\cos^2\psi\cos^2\theta_A+\sin^2\psi\sin^2\theta_A)\cos^2(\theta_A-\theta_B)##
Is that correct? I would be grateful if someone pointed me the errors...
##|12>=\cos\psi|HH>+\sin\psi|VV>## with ##\psi## the angle of polarization. The first ##H## (##V##) in ##|HH>##
(##|VV>##) is photon 1, and the second one is photon 2.
Alice observes photon 1 with a polarizer oriented ##\theta_A##. The corresponding projector is
##P_A=_1|\theta_A><\theta_A|_1## with ##|\theta_A>=\cos\theta_A|H>+\sin\theta_A|V>##. The index ##_1## is to tell the projector applies only to photon 1 (not sure about the notation...). According to Born's rule, the probability Alice detects photon 1 is:
##\mathcal{P}_A=<21|P_A|12>##
##\hphantom{\mathcal{P}_A}=(\cos\psi<H|<H|\theta_A>+\sin\psi<V|<V|\theta_A>)##
##(\cos\psi<\theta_A|H>|H>+\sin\psi<\theta_A|V>|V>)##
##\hphantom{\mathcal{P}_A}=\cos^2\psi\cos^2\theta_A+\sin^2\psi\sin^2\theta_A##
After Alice has observed photon 1 (detecting it or not), the wave function ##|12>## no longer exists (it has collapsed). The probability that Bob subsequently detects photon 2 with a polarizer oriented ##\theta_B## is then ##\mathcal{P}_A## times a ##\cos^2## from the Malus law:
##\mathcal{P}_B=(\cos^2\psi\cos^2\theta_A+\sin^2\psi\sin^2\theta_A)\cos^2(\theta_A-\theta_B)##
Is that correct? I would be grateful if someone pointed me the errors...
Last edited: