MHB Understanding Example from Topics in Banach Space Integration

Sara jj
Messages
2
Reaction score
0
Hey

Could you give me a hint how to explain this example?
Need help to prove statement in red frame.

Example from book (Topics In Banach Space Integration)
by Ye Guoju‏، Schwabik StefanThank you
 

Attachments

  • ex2.png
    ex2.png
    17.6 KB · Views: 139
Physics news on Phys.org
Sara jj said:
Hey

Could you give me a hint how to explain this example?
Need help to prove statement in red frame.

Example from book (Topics In Banach Space Integration)
by Ye Guoju‏، Schwabik StefanThank you

It's a bit hard to use something that you haven't given us...
 
for your post! To explain the example from the book, let's first define the statement in the red frame: "If a function f is integrable on a Banach space X, then there exists a sequence of simple functions converging to f in the norm of X."

This statement is essentially saying that any integrable function on a Banach space can be approximated by a sequence of simple functions in the same space. To prove this, we can use a technique called "cutting and pasting," where we divide the integral of f into smaller intervals and approximate each interval with a simple function. Then, by taking the limit of these simple functions, we can show that they converge to f in the norm of X.

In the book, the authors provide an example of how this technique can be applied to a specific function and Banach space. By following their steps and using the definition of integrability and the properties of Banach spaces, we can see how the sequence of simple functions converges to the original function in the given Banach space.

I hope this helps to explain the example in the book. Let me know if you have any further questions or need clarification.
 
I posted this question on math-stackexchange but apparently I asked something stupid and I was downvoted. I still don't have an answer to my question so I hope someone in here can help me or at least explain me why I am asking something stupid. I started studying Complex Analysis and came upon the following theorem which is a direct consequence of the Cauchy-Goursat theorem: Let ##f:D\to\mathbb{C}## be an anlytic function over a simply connected region ##D##. If ##a## and ##z## are part of...
Back
Top