- #1
Bob19
- 71
- 0
Hi
i have this following assignment in Analysis
Given [tex]X \subseteq \mathbb{R}^n[/tex] which is a nonempty subset of [tex]\mathbb{R}^n[/tex]
The set [tex]\{ \| | x -y \| | \ | x \in X \}[/tex] has an infimum such that
[tex]f(y) = \{ \| | x -y \| | \ | x \in X \}[/tex]
where [tex]f: \mathbb{R}^n \rightarrow \mathbb{R}^n [/tex]
I need a hint on howto show that if [tex]y \in X[/tex] then f(y) = 0 ??
Regards,
Bob19
i have this following assignment in Analysis
Given [tex]X \subseteq \mathbb{R}^n[/tex] which is a nonempty subset of [tex]\mathbb{R}^n[/tex]
The set [tex]\{ \| | x -y \| | \ | x \in X \}[/tex] has an infimum such that
[tex]f(y) = \{ \| | x -y \| | \ | x \in X \}[/tex]
where [tex]f: \mathbb{R}^n \rightarrow \mathbb{R}^n [/tex]
I need a hint on howto show that if [tex]y \in X[/tex] then f(y) = 0 ??
Regards,
Bob19
Last edited: