- #1
ognik
- 643
- 2
Hi, appreciate some help with this FS problem - $f(t)= 0$ on $[-\pi, 0]$ and $f(t)=sin\omega t$ on $[0,\pi]$
I get $a_0=\frac{2}{\pi}$ and $b_1 = \frac{1}{2}$, which agree with the book; all other $b_n = 0$ because Sin(mx)Sin(nx) orthogonal for $m \ne n$
But $a_n =\frac{1}{\pi}\int_{0}^{\pi}Sin(\omega t) Cos (n \omega t) \,d\omega t $ - so this should also be 0 because the terms are orthogonal, but the book's answer has Cos terms in even powers of n?
I get $a_0=\frac{2}{\pi}$ and $b_1 = \frac{1}{2}$, which agree with the book; all other $b_n = 0$ because Sin(mx)Sin(nx) orthogonal for $m \ne n$
But $a_n =\frac{1}{\pi}\int_{0}^{\pi}Sin(\omega t) Cos (n \omega t) \,d\omega t $ - so this should also be 0 because the terms are orthogonal, but the book's answer has Cos terms in even powers of n?