- #1
thepolishman
- 15
- 0
- TL;DR Summary
- Evolution of velocity distribution of a gas undergoing free expansion
Hey all. I'm trying to understand the evolution of the velocity distribution function of a gas undergoing free expansion. I know that at t=0, the velocity distribution function is given by ##u(t=0, x)=Ax^{1/2}##, where ##A## is a known constant.
From the momentum equation, I have:
##du/dt+u du/dx=0##
Using separation of variables, I get:
##u=F(x)G(t)##
##FdG/dt=-FG^2dF/dx##
##1/G^2dG/dt=-dF/dx##
##1/G^2dG/dt=M##
##-dF/dx=M##
##F=-Mx+f(t)##
##G=-1/(Mt+g(x))##
##u=(Mx+f(t))/(Mt+g(x))##
Using the initial condition that ##u(t=0, x)=Ax^{1/2}##, I get:
##u(t=0, x)=(Mx+f(0))/g(x)##
##Ax^{1/2}=(Mx+f(0))/g(x)##
From which I get that:
##f(0)=0, g(x)=x^{1/2}, M=A##
Thus, my velocity distribution becomes:
##u=(Ax+f(t))/(At+x^{1/2})##
Assuming I did everything correctly until this point, my issue is with figuring out what f(t) is. Anyone know how I can proceed?
From the momentum equation, I have:
##du/dt+u du/dx=0##
Using separation of variables, I get:
##u=F(x)G(t)##
##FdG/dt=-FG^2dF/dx##
##1/G^2dG/dt=-dF/dx##
##1/G^2dG/dt=M##
##-dF/dx=M##
##F=-Mx+f(t)##
##G=-1/(Mt+g(x))##
##u=(Mx+f(t))/(Mt+g(x))##
Using the initial condition that ##u(t=0, x)=Ax^{1/2}##, I get:
##u(t=0, x)=(Mx+f(0))/g(x)##
##Ax^{1/2}=(Mx+f(0))/g(x)##
From which I get that:
##f(0)=0, g(x)=x^{1/2}, M=A##
Thus, my velocity distribution becomes:
##u=(Ax+f(t))/(At+x^{1/2})##
Assuming I did everything correctly until this point, my issue is with figuring out what f(t) is. Anyone know how I can proceed?
Last edited: