- #1
Phymath
- 184
- 0
Homework Statement
I'm trying to see the relation of the rotation of a vector in a plane to the generator of rotations...I want to see how [tex]e^{-i \theta J}[/tex] the rotation representation gives you the same result as acting on any vector with the rotation matrix say with the z direction fixed.
[tex]
\[ \left( \begin{array}{ccc}
Cos(\theta) & -Sin(\theta) & 0 \\
Sin(\theta) & Cos(\theta) & 0 \\
0 & 0 & 1 \end{array} \right)\] = R_z [/tex]
is [tex] R_z \textbf{v} = e^{-i \theta J_z^{(1)}} \textbf{v} [/tex]
because a 3 dimensional vector has a spin one representation (right? because one full rotation gives the same vector back)
with [tex] J_z^{(1)} = \[ \left( \begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1 \end{array} \right)\] [/tex]
I get [tex] e^{-i \theta J_z^{(1)}} = \sum\frac{(-i \theta)^n}{n!}(J_z)^n = Cos(\theta)(J_z)^2-i J_z^{(1)} Sin(\theta) [/tex]
[tex]
e^{-i \theta J_z^{(1)}}= \[ \left( \begin{array}{ccc}
Cos(\theta)-i Sin(\theta) & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & Cos(\theta)+i Sin(\theta) \end{array} \right)\] [/tex]
when this matrix is applied to the vector [tex]\textbf{v}[/tex] it doesn't produce the same effect someone help finish the missing pieces thanks!