MHB Understanding How to Solve Vector Magnitudes and Angles

AI Thread Summary
To solve for the unknown magnitudes of two vectors, one must sum the x and y components and set them equal to zero, leading to a system of equations. A method involves using specific ratios for the components based on angles, such as $\frac{3}{5}$ and $\frac{4}{5}$ for the x and y components, respectively. The angle of 53.1 degrees, derived from $\arctan(\frac{4}{3})$, is used to determine the x-component by multiplying the vector's magnitude by $\cos(53.1)$. The discussion raises concerns about the configuration of the problem, particularly regarding the absence of positive y-components in the vectors. Understanding the context, such as whether this is a statics problem involving forces, is crucial for correctly applying these methods.
bergausstein
Messages
191
Reaction score
0

I just don't understand others way solving this problem

to solve for the unknown magnitudes of the two vectors I have to sum up all of the components in x and y and set them equal zero and from there I'll get some systems of equation.

I saw a method where they let the x-component of AB and BE to be

$\displaystyle\frac{3}{5}\cdot -9.38$ and $\displaystyle\frac{3}{5}\cdot BE$ respectively.

and the y-components of AB and BE to be

$\displaystyle\frac{4}{5}\cdot -9.38$ and $\displaystyle\frac{4}{5}\cdot -BE$ respectively

Can you explain why they do that?

and how can we solve this using angle

I know that $\arctan(\frac{4}{3})=53.1\deg$ but I'm uncertain on how to plug it in my equation properly I also know that to get the x-component I have to multiply the magnitude of the vector I'm interested into by the $\cos(53.1)$ in the problem given. but this configuration makes me wonder if I'm doing it correctly. hope you can help me with this. thanks!

 

Attachments

  • statics.png
    statics.png
    2.7 KB · Views: 110
Mathematics news on Phys.org
I think some context would be good here. Is this a statics problem? I'm seeing forces on your diagram, which is typically what you find on a Free Body Diagram. If you have to set all the components equal to zero, I think you're going to have a hard time of it, as none of the vectors have any positive $y$-component.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
2
Views
2K
Replies
1
Views
2K
Replies
1
Views
10K
Replies
1
Views
6K
Replies
2
Views
2K
Replies
3
Views
3K
Replies
1
Views
11K
Replies
4
Views
3K
Back
Top