- #1
Knissp
- 75
- 0
Homework Statement
[tex]y'' + 2y' + 2y = t^2 + 4t [/tex]
[tex]y(0) = 0[/tex]
[tex]y'(0) = -1[/tex]
Homework Equations
[tex]L(y) = Y [/tex]
[tex]L(y') = sY - y(0) [/tex]
[tex]L(y'') = s^2 Y - s y(0) - y'(0) [/tex]
[tex]L(t^n) = \frac {n!}{s^{n+1}}[/tex]
[tex]L(a*b) = AB[/tex]
[tex]a*b = L^{-1}(AB)[/tex]
The Attempt at a Solution
Take the Laplace transform of both sides.
[tex]L(y'' + 2y' + 2y) = L(t^2 + 4t) [/tex]
By linearity:
[tex]L(y'') + 2L(y') + 2L(y) = L(t^2) + 4L(t) [/tex]
Substitute:
[tex](s^2 Y - s y(0) - y'(0)) + 2(sY - y(0)) + 2Y = \frac{2}{s^3} + \frac{4}{s^2} [/tex]
Plug in initial conditions:
[tex](s^2 Y + 1) + 2(sY) + 2Y = \frac{2}{s^3} + \frac{4}{s^2} [/tex]
Solve for Y:
[tex] Y (s^2 + 2s + 2) -1 = \frac{2}{s^3} + \frac{4}{s^2} [/tex]
[tex] Y = \frac {\frac{2}{s^3} + \frac{4}{s^2} + 1}{s^2 + 2s + 2} [/tex]
Now I must take the inverse Laplace transform. This is where I get confused.
Rewrite:
[tex] Y = \frac{1}{s^2 + 2s + 2} (\frac{2}{s^3} + \frac{4}{s^2} + 1)[/tex]
Distribute:
[tex] Y = \frac{1}{s^2 + 2s + 2} \frac{2}{s^3} + \frac{1}{s^2 + 2s + 2} \frac{4}{s^2} + \frac{1}{s^2 + 2s + 2} [/tex]
Completing the square:
[tex] Y = \frac{1}{(s+1)^2 + 1} \frac{2}{s^3} + \frac{1}{(s+1)^2 + 1} \frac{4}{s^2} + \frac{1}{(s+1)^2 + 1} [/tex]
Now to take the inverse Laplace transform of both sides:
[tex] y = L^{-1}(\frac{1}{(s+1)^2 + 1} \frac{2}{s^3}) + L^{-1}(\frac{1}{(s+1)^2 + 1} \frac{4}{s^2}) + L^{-1}(\frac{1}{(s+1)^2 + 1}) [/tex]
[tex] y = L^{-1}(\frac{1}{(s+1)^2 + 1} \frac{2}{s^3}) + L^{-1}(\frac{1}{(s+1)^2 + 1} \frac{4}{s^2}) + e^{-t}sin(t) [/tex]
So now I need to do the separate inverse transforms (via convolutions):
[tex]L^{-1}(\frac{1}{(s+1)^2 + 1} \frac{2}{s^3})[/tex]
[tex]= e^{-t}sin(t) * t^2[/tex]
[tex]= \int_0^t (e^{-(t-v)}sin(t-v))(v^2)) dv [/tex]
[tex]L^{-1}(\frac{1}{(s+1)^2 + 1} \frac{4}{s^2})[/tex
[tex]= e^{-t}sin(t) * 4t [/tex]
[tex]= \int_0^t (e^{-(t-v)}sin(t-v))(4v) dv [/tex]
I don't know how to figure those convolution integrals. Any ideas?
Alternatively, is there a better way to approach the problem?