hold on, hold on. In the bar itself, there is no electric field. There is just magnetic field, and there is a current due to the velocity of the bar through the magnetic field (i.e. a force due to the magnetic field, with no electric field). Now, the rest of the circuit is stationary, and there isn't any magnetic force on the charge carriers in the rest of the circuit (except due to Lenz's law, but we can ignore that to first order). So, I agree that in the rest of the circuit there will be an electric field, due to a build-up of charge carriers at ##a## and a lack of charge carriers at ##b## (if we have positive charge carriers). And this electric field will cause the charge carriers to flow around the rest of the circuit, so that current is the same at all points in the circuit. So in the rest of the circuit, the electric field will be pointing anticlockwise to maintain the current. And then there will be a potential across the bar, which means that a steady current will flow.
So, ok there is an electric field caused by build-up of charge. But this electric field will be anticlockwise, if we have positive charge carriers. So the potential will be large at ##a## and small at ##b##. Also, the emf is a force, integrated over the length of wire. So for the bar, the emf will indeed be pointing upwards, if we have positive charge carriers (which is the convention) since the magnetic force on these charge carriers will be upwards.
edit: so, once there is electrostatic equilibrium (which occurs extremely quickly), there will be a steady current through the bar, meaning that the emf on the charge carriers in the bar is zero overall. i.e. there is a magnetic emf upwards, but there is now an electric emf downwards due to the resistance of the circuit, which prevents an infinite current from flowing.
second edit: and in the picture, it looks like they just show the magnetic emf. This is pretty standard, I think it is usual to just talk about the emf due to external fields. i.e. the electric emf is due to an internal field between the charge carriers themselves, but the external emf is due to the external magnetic field.