- #1
cateater2000
- 35
- 0
Hi I just need some help on understanding some general notation in this quesiton:
Prove if {x_1,x_2,..,x_m} is linearly independent then so is {x_1,x_2,...,x_i-1, x_i+1,...,x_m} for every i in {1,2,...,m}.
I don't really understand what the difference between {x_1,x_2,...,x_i-1, x_i+1,...,x_m} for every i in {1,2,...,m} and {x_1,x_2,..,x_m} is.
Any help clarifying this would be great, and any hints for the question would be must appreciated, thanks.
Prove if {x_1,x_2,..,x_m} is linearly independent then so is {x_1,x_2,...,x_i-1, x_i+1,...,x_m} for every i in {1,2,...,m}.
I don't really understand what the difference between {x_1,x_2,...,x_i-1, x_i+1,...,x_m} for every i in {1,2,...,m} and {x_1,x_2,..,x_m} is.
Any help clarifying this would be great, and any hints for the question would be must appreciated, thanks.