- #1
pholee95
- 10
- 0
I'm stuck on this problem. Can anyone please help me understand?
Consider the model of geometry where point means rational point in the Euclidean plane and all of our other terms have their normal interpretation. This model doesn't satisfy the Ruler Postulate because there isn't a one-to-one correspondence with R. It also doesn't satisfy part (c) of the Protractor Postulate. Explain why it doesn't satisfy this part of the postulate by considering the line through (0,0) and (1,0), the upper half-plane, and the number r = 30. (Hint: Use a little piece of trig and think about the point E in this case.)
*I know that part (c) of the protractor postulate states this: For each real number r, 0 < r < 180, and for each half-plane H bounded by AB there exists a unique ray AE such that E is in H and μ(angleBAE) = r◦.
Consider the model of geometry where point means rational point in the Euclidean plane and all of our other terms have their normal interpretation. This model doesn't satisfy the Ruler Postulate because there isn't a one-to-one correspondence with R. It also doesn't satisfy part (c) of the Protractor Postulate. Explain why it doesn't satisfy this part of the postulate by considering the line through (0,0) and (1,0), the upper half-plane, and the number r = 30. (Hint: Use a little piece of trig and think about the point E in this case.)
*I know that part (c) of the protractor postulate states this: For each real number r, 0 < r < 180, and for each half-plane H bounded by AB there exists a unique ray AE such that E is in H and μ(angleBAE) = r◦.