- #1
Kinta
- 71
- 5
Homework Statement
I'm unable to see fully how the following equality is determined: $$\frac {\partial f(y + \alpha \eta, \, y' + \alpha \eta', \, x)}{\partial \alpha} = \eta \frac {\partial f}{\partial y} + \eta' \frac {\partial f}{\partial y'}$$ where ##y = y(x)##, ##\eta = \eta (x)##, and primes indicate derivatives in ##x##.
Homework Equations
I know that, generally, a result of the chain rule is that, with ##h = h(s,t)## and ##k = k(s,t)##, $$\frac {\partial g(h, k)}{\partial t} = \frac {\partial g}{\partial h} \frac {\partial h}{\partial t} + \frac {\partial g}{\partial k} \frac {\partial k}{\partial t}.$$
The Attempt at a Solution
When I try to apply the general method to this problem I get $$\frac {\partial f(y + \alpha \eta, \, y' + \alpha \eta', \, x)}{\partial \alpha} = \eta \frac {\partial f}{\partial (y + \alpha \eta)} + \eta' \frac {\partial f}{\partial (y' + \alpha \eta')} + (0) \frac {\partial f}{\partial x}.$$
So, the core of my trouble lies in not understanding how the partials in the denominators come to be without any ##\alpha## or ##\eta## terms.