- #1
Incand
- 334
- 47
Theorem
If A is non singular then ##(A^T)^{-1} = (A^{-1})^T##
Proof
The first part of proof shows that the inverse unambiguously decided. Then
##A^T(A^T)^{-1} = I##
and
##I = A^{-1}A = (A^{-1}A)^T = A^T(A^{-1})^T##
Where the second step is possible because ##I = I^T##. From the equations above
##A^T(A^T)^{-1} = A^T(A^{-1})^T \Longrightarrow (A^T)^{-1} = (A^{-1})^T##
The text claims the last step is possible thanks to the inverse being unabigously decided. Why does this allow us to use cancellation?
If A is non singular then ##(A^T)^{-1} = (A^{-1})^T##
Proof
The first part of proof shows that the inverse unambiguously decided. Then
##A^T(A^T)^{-1} = I##
and
##I = A^{-1}A = (A^{-1}A)^T = A^T(A^{-1})^T##
Where the second step is possible because ##I = I^T##. From the equations above
##A^T(A^T)^{-1} = A^T(A^{-1})^T \Longrightarrow (A^T)^{-1} = (A^{-1})^T##
The text claims the last step is possible thanks to the inverse being unabigously decided. Why does this allow us to use cancellation?