- #36
waterfall
- 381
- 1
Oudeis Eimi said:Most physicists work in condensed matter, not particle or high-energy physics. They have some
knowledge of QFT (mostly the non-relativistic kind) as part of their training in QM, but needn't be
experts in the mathematical foundations of QM.
The particles are excitations, the most basic 'vibration states' of the fields. When we say they don't
necessarily have a position, what we mean, in layman's language, is that those 'basic vibrations'
aren't confined to a single point in space. Note however that they may (but don't NEED to be)
confined to a very tiny region from our macroscopic point of view. This is completely analogous to
the case of non-relativistic ordinary QM.
As to how to visualise a quantum field... well, quantum operators behave a lot like stochastic
variables. They have an expectation value and a complete set of moments which give you the
indeterminacy of said expectation value. So in principle, any such operator can be visualised as
a 'fuzzy' quantity, centered around the expectation value and with the fuzziness being proportional
to the indeterminacy. So for the case of a field, it's a 'fuzzy' field.
As a visualisation technique, this is probably only useful for bosonic fields in states such that
the indeterminacy is much smaller than the expectation value. This is the case for instance for
the electromagnetic field in most ordinary cases. Fermionic fields OTOH don't have a classic
limit and are thus much harder to visualise.
Electromagnetic field and fermionic (or matter) fields are not directly the gauge fields which are unobservable. We can observe the electromagnetic field. Is it possible we just haven't yet invented the technology to detect matter fields? We detect electrons by scattering events and hits in detector. But the more subtle matter fields may need other methods of detection. What would it take to detect them?