- #1
bloodasp
- 37
- 0
Can anyone point me to a text or link that summarizes the rules when evaluating/simplifying an expression of the form
[tex] (a^n)^(1/m) [/tex] for a < 0. [tex] (a^n)^(1/m) [/tex] yields different answers for [tex] a^(n/m) [/tex] and [tex] (a^(1/m))^n [/tex].
Ex:
[tex] (-8)^(2/6) = (-8)^(1/3) = -2 [/tex]
[tex] (-8)^(2/6) = ((-8)^2)^(1/6) = 2 [/tex]
[tex] (-8)^(2/6) = (-8^(1/6))^2 = undefined [/tex]
Thank you very much!
[tex] (a^n)^(1/m) [/tex] for a < 0. [tex] (a^n)^(1/m) [/tex] yields different answers for [tex] a^(n/m) [/tex] and [tex] (a^(1/m))^n [/tex].
Ex:
[tex] (-8)^(2/6) = (-8)^(1/3) = -2 [/tex]
[tex] (-8)^(2/6) = ((-8)^2)^(1/6) = 2 [/tex]
[tex] (-8)^(2/6) = (-8^(1/6))^2 = undefined [/tex]
Thank you very much!
Last edited: