- #1
chwala
Gold Member
- 2,759
- 390
- TL;DR Summary
- To check on how to arrive at ##I_n = \dfrac{1}{n-1}⋅ \tan^{n-1} x - I_{n-2}##
I am looking at ## \int \tan^n dx ## where ##n## is a positive integer. The index ##n## has been reduced by writing ##\tan^n x ## as ##\tan ^{n-2} \tan^2 x## which is quite clear with me.
We have,
## \int \tan^n xdx = \int \tan^{n-2} x⋅ \tan^2 x dx=\int \tan^{n-2}x ⋅(\sec^2 x -1) dx ##
=##\int \tan^{n-2} x⋅\sec^2 x dx - \int \tan^{n-2} dx ##
now this is the part that i need some insight how they moved to
##I_n = \dfrac{1}{n-1}⋅ \tan^{n-1} x - I_{n-2}##
not to say that i do not get it...i want to check if i am doing it right,
My steps,
given,
## \int \tan^n x dx = \int \tan^{n-2} x⋅\sec^2 x dx - \int \tan^{n-2} dx ##
i let ##u = tan x## therefore ##u^{'} = \sec^2 x## and writing ##\int \tan^n x dx ## as ##I_n##,
##I_n = \int u^{n-2} du - I_{n-2}##
##I_n = \dfrac{1}{n-1}⋅ u^{n-1} - I_{n-2}##
##I_n = \dfrac{1}{n-1}⋅ \tan^{n-1} x - I_{n-2}##
Thanks and cheers.
We have,
## \int \tan^n xdx = \int \tan^{n-2} x⋅ \tan^2 x dx=\int \tan^{n-2}x ⋅(\sec^2 x -1) dx ##
=##\int \tan^{n-2} x⋅\sec^2 x dx - \int \tan^{n-2} dx ##
now this is the part that i need some insight how they moved to
##I_n = \dfrac{1}{n-1}⋅ \tan^{n-1} x - I_{n-2}##
not to say that i do not get it...i want to check if i am doing it right,
My steps,
given,
## \int \tan^n x dx = \int \tan^{n-2} x⋅\sec^2 x dx - \int \tan^{n-2} dx ##
i let ##u = tan x## therefore ##u^{'} = \sec^2 x## and writing ##\int \tan^n x dx ## as ##I_n##,
##I_n = \int u^{n-2} du - I_{n-2}##
##I_n = \dfrac{1}{n-1}⋅ u^{n-1} - I_{n-2}##
##I_n = \dfrac{1}{n-1}⋅ \tan^{n-1} x - I_{n-2}##
Thanks and cheers.