- #1
polygamma
- 229
- 0
$\displaystyle \int_{0}^{1} \ln \ x \ dx $ is not a proper Riemann integral since $\ln \ x $ is not bounded on $[0,1]$. Yet $ \displaystyle \int_{0}^{1} \ln \ x \ dx = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \ln \left(\frac{k}{n} \right)$. Is this because $\ln \ x$ is monotone on $(0,1]$?