Understanding Saddle Points in Partial Differentiation - Explained with Examples

  • Thread starter Thread starter ZedCar
  • Start date Start date
  • Tags Tags
    Point
ZedCar
Messages
353
Reaction score
1
I'm working through a partial differentiation problem, to which I have the answer.

The function being 4x^2+4xy-y^3-2x+2 to which the stationary points must be obtained and classified.

At the end of the working out, when partial differentiation is conducted and a number of -32 is obtained, it states that because this is a negative number this is a "saddle point". Is this another term for a "point of inflection"?

How can they make this claim? I thought since the number obtained is negative it would therefore be a maximum turning point.

The second number obtained with the second partial differentiation is 32, and it states since this is a positive number this is a minimum turning point; which I understand.

Thank you.
 
Physics news on Phys.org
ZedCar said:
I'm working through a partial differentiation problem, to which I have the answer.

The function being 4x^2+4xy-y^3-2x+2 to which the stationary points must be obtained and classified.

At the end of the working out, when partial differentiation is conducted and a number of -32 is obtained, it states that because this is a negative number this is a "saddle point". Is this another term for a "point of inflection"?
Just to add to the other reply. For a function of one variable a saddle point is a point of inflection, but an inflection point need not be a saddle point since the slope need not be zero.

For a function of two variables a saddle point is a stationary point that is neither a max nor a min point. The term "inflection point" is not used for functions of two variables that I know of.
 
Thanks very much for the info guys!. Much appreciated, Thank you.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top