I Understanding Special Relativity and Coordinates

lriuui0x0
Messages
101
Reaction score
25
I'd like to get some help on checking my understanding of special relativity, specifically I'm trying to clarify the idea of coordinates. Any comment is really appreciated!

The spacetime is an affine space ##M^4##, which is associated with a 4 dimensional real vector space ##\mathbb{R}^4##. This vector space is abstract, and no basis is prechosen, so there's no canonical way to define what the coordinate might be.

There's a metirc g defined on the vector space ##\mathbb{R}^4##. This inner product has the property that for a particular set of basis, it has ##(+,−,−,−)## signature. Such a basis is a standard Cartesian basis, which is not unique.

The linear maps ##\mathbb{R}^4 \to \mathbb{R}^4## between the sets of standard basis form the Lorentz group. The affine maps ##M^4 \to M^4## between the set of standard basis form the Poincare group. All such maps have the metric signature ##(+, -, -, -)##.

Coordinates is a map ##M^4 \to \mathbb{R}^4## (here ##\mathbb{R}^4## means a four real number tuple, not an abstrct vector space). Any Cartesian basis at a point defines a Cartesian coordinates by defining the coordinates to be the components of the vector. The standard Cartesian coordinates defined as above is the same as the coordinates being inertial. Other coordinates are non-inertial, in which the metric components don't have ##(+, -, -, -)## signature.
 
Physics news on Phys.org
The signature of a fundamental form (it's a better word than "metric", because the "metric" in relativity is not really a metric, because it's not positive definite) is independent of the choice of basis.
 
vanhees71 said:
The signature of a fundamental form (it's a better word than "metric", because the "metric" in relativity is not really a metric, because it's not positive definite) is independent of the choice of basis.
Fundamental form is already used in "the first and second fundamental forms".
 
I guess that's where the naming comes from since Gauss's theory of curved surfaces is the paradigmatic example for the use of a differentiable manifold.
 
Thanks for the checking!
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...

Similar threads

Replies
5
Views
429
Replies
8
Views
1K
Replies
29
Views
3K
Replies
34
Views
5K
Replies
8
Views
2K
Replies
5
Views
1K
Back
Top