- #1
JD_PM
- 1,131
- 158
- TL;DR Summary
- I want to understand how to show that the gauge-invariant, renormalizable term ##\frac 1 2 G_i^{\mu \nu} \varepsilon_{\mu \nu \rho \sigma} G^{\rho \sigma}_i## breaks the CP symmetry of QCD
In "CP violation" book by Bigi and Sanda (section 8.2.1. QCD), I read that "the QCD Lagrangian is invariant under CP transformations" and wanted to prove it.
The QCD Lagrangian is given by
\begin{equation}
\mathscr{L}_{QCD} = \bar \Psi^f [i \gamma^{\mu}D_{\mu} -m_f] \Psi^f - \frac 1 4 G_{i \mu \nu}G_i^{\mu \nu} \tag{1}
\end{equation}
Where ##f## stands for quark flavor and
\begin{equation*}
\Psi^f = \begin{pmatrix}
\psi_r^f \\
\psi_g^f \\
\psi_b^f \\
\end{pmatrix}, \quad G_i^{\mu \nu} := F_i^{\mu \nu} + g_s f_{ijk} A_j^{\mu} A_k^{\nu}, \quad F_i^{\mu \nu} := \partial^{\nu} A^{\mu}_i - \partial^{\mu} A^{\nu}_i
\end{equation*}
Where ##f_{ijk}## is the so-called structure constant, which is totally antisymmetric.
The covariant derivative is given by
\begin{equation*}
D_{\mu} \Psi^f = \left[ \partial_{\mu} + ig_s \lambda_j A_j^{\mu}/2 \right] \Psi^f
\end{equation*}
Where ##\lambda## are the Gell-Mann matrices.
In class we were taught CP using a particular representation of the gamma matrices: the Weyl representation (alternative form). So let us use the same here. It follows that
\begin{equation*}
\psi_{cp} = i \gamma_2 \psi^*, \quad \bar \Psi \chi \to \bar \Psi_{cp} \chi_{cp} = \bar \chi \Psi, \quad \bar \Psi \gamma_{\mu} \chi \to \bar \Psi_{cp} \gamma_{\mu} \chi_{cp} = -\bar \chi \gamma_{\mu} \Psi, \quad A^{\mu}_{cp} = -A^{\mu}
\end{equation*}
Using the above transformations I see that ##(1)## is CP invariant (please let me know if you want me to give the proof).
Then Bigi and Sanda asserted that QCD is actually not CP invariant, because there exists a gauge-invariant and renormalizable operator that can be added to ##(1)##
\begin{equation}
\frac 1 2 G_i^{\mu \nu} \varepsilon_{\mu \nu \rho \sigma} G^{\rho \sigma}_i \tag{2}
\end{equation}
However, I do not see why the presence of the totally antisymmetric tensor ##\varepsilon_{\mu \nu \rho \sigma}## breaks CP. I get that it is CP invariant as well, just as the ##\frac 1 4 G_{i \mu \nu}G_i^{\mu \nu}## term... What am I missing?Thank you!
The QCD Lagrangian is given by
\begin{equation}
\mathscr{L}_{QCD} = \bar \Psi^f [i \gamma^{\mu}D_{\mu} -m_f] \Psi^f - \frac 1 4 G_{i \mu \nu}G_i^{\mu \nu} \tag{1}
\end{equation}
Where ##f## stands for quark flavor and
\begin{equation*}
\Psi^f = \begin{pmatrix}
\psi_r^f \\
\psi_g^f \\
\psi_b^f \\
\end{pmatrix}, \quad G_i^{\mu \nu} := F_i^{\mu \nu} + g_s f_{ijk} A_j^{\mu} A_k^{\nu}, \quad F_i^{\mu \nu} := \partial^{\nu} A^{\mu}_i - \partial^{\mu} A^{\nu}_i
\end{equation*}
Where ##f_{ijk}## is the so-called structure constant, which is totally antisymmetric.
The covariant derivative is given by
\begin{equation*}
D_{\mu} \Psi^f = \left[ \partial_{\mu} + ig_s \lambda_j A_j^{\mu}/2 \right] \Psi^f
\end{equation*}
Where ##\lambda## are the Gell-Mann matrices.
In class we were taught CP using a particular representation of the gamma matrices: the Weyl representation (alternative form). So let us use the same here. It follows that
\begin{equation*}
\psi_{cp} = i \gamma_2 \psi^*, \quad \bar \Psi \chi \to \bar \Psi_{cp} \chi_{cp} = \bar \chi \Psi, \quad \bar \Psi \gamma_{\mu} \chi \to \bar \Psi_{cp} \gamma_{\mu} \chi_{cp} = -\bar \chi \gamma_{\mu} \Psi, \quad A^{\mu}_{cp} = -A^{\mu}
\end{equation*}
Using the above transformations I see that ##(1)## is CP invariant (please let me know if you want me to give the proof).
Then Bigi and Sanda asserted that QCD is actually not CP invariant, because there exists a gauge-invariant and renormalizable operator that can be added to ##(1)##
\begin{equation}
\frac 1 2 G_i^{\mu \nu} \varepsilon_{\mu \nu \rho \sigma} G^{\rho \sigma}_i \tag{2}
\end{equation}
However, I do not see why the presence of the totally antisymmetric tensor ##\varepsilon_{\mu \nu \rho \sigma}## breaks CP. I get that it is CP invariant as well, just as the ##\frac 1 4 G_{i \mu \nu}G_i^{\mu \nu}## term... What am I missing?Thank you!