- #1
Crispin
- 8
- 0
Hi folks, hope somebody can help me understand this one please?
Gven an expression i = ia-ic = icorr(exp(n/Ba)-exp(-n/Bc)), we are told that if -n<<Bc then exp(-n/Bc) tends to 0 & the equation becomes i (is approx) = ia = icorr exp(n/Ba).
I find that exp(-n/Bc) tends towards 0 if I substitute decreasing numbers in place of -n. So that works fine.
But then the we are told that if n>>Ba the equation becomes i (is approx) = ic = icorr exp(-n/Bc). This must mean that the exp(n/Ba) term must have tended to 0 again, and be negated, hence why it is removed.
When I try substituting increasing value numbers in place of n for exp(n/Ba), I find the opposite trend, i.e. exp(5/2) = 12.1 exp(10/2) = 148.4 so with increasing n the trend is towards infinity not 0?
Any advice most appreciated
Crispin
Gven an expression i = ia-ic = icorr(exp(n/Ba)-exp(-n/Bc)), we are told that if -n<<Bc then exp(-n/Bc) tends to 0 & the equation becomes i (is approx) = ia = icorr exp(n/Ba).
I find that exp(-n/Bc) tends towards 0 if I substitute decreasing numbers in place of -n. So that works fine.
But then the we are told that if n>>Ba the equation becomes i (is approx) = ic = icorr exp(-n/Bc). This must mean that the exp(n/Ba) term must have tended to 0 again, and be negated, hence why it is removed.
When I try substituting increasing value numbers in place of n for exp(n/Ba), I find the opposite trend, i.e. exp(5/2) = 12.1 exp(10/2) = 148.4 so with increasing n the trend is towards infinity not 0?
Any advice most appreciated
Crispin