- #1
emilya
- 1
- 0
Can anyone give me any help on how to get started, or how to do this problem?
---
Prove that if the terms of a sequence decrease monotonically (a_1)>= (a_2)>= ...
and converge to 0 then the series [sum](a_k) converges iff the associated
dyadic series (a_1)+2(a_2)+4(a_4)+8(a_8)+... = [sum](2^k)*(a_2^k) converges.
I call this the block test b/c it groups the terms of the series in blocks
of length 2^(k-1).
----
thank you!
---
Prove that if the terms of a sequence decrease monotonically (a_1)>= (a_2)>= ...
and converge to 0 then the series [sum](a_k) converges iff the associated
dyadic series (a_1)+2(a_2)+4(a_4)+8(a_8)+... = [sum](2^k)*(a_2^k) converges.
I call this the block test b/c it groups the terms of the series in blocks
of length 2^(k-1).
----
thank you!